

RPS: Reference guide

Trio Motion Technology

Trio Robotics Series

First Edition • 2020

Revision: 1.4

Trio Programming Guides are designed to aid learning of the TrioBASIC language through description and
examples. Each one will cover a particular topic and discuss which commands and parameters in the TrioBASIC are

required to complete the task.

A general understanding of TrioBASIC is required and it is recommended to attend an introduction to TrioBASIC
training course. The programming guides are not a replacement for the TrioBASIC help files which can be found in

Motion Perfect as well as the manual which cover each command and parameter in more detail and should be
referenced when required.

Any examples given in the programming guide will work and have been tested on an isolated controller. If you
choose to use these examples on a machine please take care that it will not cause damage or injury and that they

are correctly included in the project changing parameters and values where required.

All goods supplied by Trio are subject to Trio’s standard terms and conditions of sale.

The material in this manual is subject to change without notice. Despite every effort, in a document of this scope
errors and omissions may occur. Therefore Trio cannot be held responsible for any malfunctions or loss of data as

a result.

Copyright (C) 2000-2018 Trio Motion Technology Ltd. All Rights Reserved

UK | USA | CHINA | INDIA

www.triomotion.com

SAFETY WARNING

During the installation or use of a control system, users of Trio products must ensure there is no possibility of
injury to any person, or damage to machinery.

Control systems, especially during installation, can malfunction or behave unexpectedly.

Bearing this in mind, users must ensure that even in the event of a malfunction or unexpected behaviour the
safety of an operator or programmer is never compromised.

This document uses the following icons for your reference:



Information that relates
to safety issues and

critical software
information.


Information to highlight

key features or
methods.


Useful tips and

techniques.



Example programs.

Contents
1. RPS language extension .. 1

1.1. Definition .. 1

2. Kinematic group ... 2

2.1. Syntax ... 2

2.2. Behaviour ... 2

3. Robot selection and program types ... 4

3.1. Robot selection ... 4

3.2. Program types .. 4

3.2.1 Robot Program .. 4

3.2.2 Robot Basic Program ... 5

3.3.3 Robot Library .. 5

3.1. Program Pointer ... 5

4. Frames and Tools ... 6

4.1. Definition .. 6

4.2. Syntax ... 7

4.3. Behaviour ... 8

5. TARGET data type ... 11

5.1. Definition .. 11

5.2. Cartesian .. 11

5.2.1. TARGET ... 11

5.2.2. GTA .. 11

Interaction with MOVEs ... 11

5.3. Joint .. 12

5.3.1. TARGETJ .. 12

5.3.2. GTAJ ... 12

Interaction with MOVEs ... 12

5.4. Syntax ... 12

5.5. Behaviour ... 13

5.1. Robot Position .. 15

5.1.1. ROBOT_LPOS ... 15

5.1.2. ROBOT_JPOS ... 15

6. Move commands ... 16

6.1. General overview .. 16

Speed ... 17

Accel ... 17

Decel ... 17

Configuration ... 17

Interrupt by path percentage .. 18

Interrupt by input number.. 18

Interrupt by time ... 18

Routine Output ... 18

6.2. Precision zone ... 19

6.3. MOVEJ .. 20

Definition .. 20

Syntax .. 20

Examples .. 20

6.4. MOVEL .. 24

Definition .. 24

Syntax .. 24

Examples .. 24

6.5. MOVEC ... 28

Definition .. 28

Syntax .. 28

Examples .. 28

6.6. MOVEJREL .. 32

Definition .. 32

Syntax .. 32

Examples .. 32

6.7. MOVELREL .. 33

Definition .. 33

Syntax .. 33

Examples .. 33

7. Jogging .. 34

7.1. Definition .. 34

7.2. Syntax ... 34

7.3. Behaviour ... 34

8. Singularities .. 37

9. Robot configurations ... 39

10. Limits ... 41

10.1. Definition .. 41

11. Parasitic Compensation .. 42

11.1. Syntax ... 42

11.2. Description ... 42

11.3. Parameters ... 42

12. Errors ... 44

12.1. AXISSTATUS bit definitions .. 44

12.2. ROBOTSTATUS bit definitions .. 45

12.3. Robot log .. 45

Syntax .. 45

13. Collision detection .. 47

13.1. Definition .. 47

13.2. Syntax ... 48

14. Synchronisation .. 50

14.1. Attach Object Frame ... 50

Attach Object Frame with a conveyor ... 50

Attach Object Frame with a multipurpose machine ... 52

Detach Object Frame.. 52

General behaviour ... 52

14.2. Sync to object frame ... 53

Syntax .. 53

14.3. Sync to GTA... 54

Syntax .. 54

RPS

RPS language extension 1

1. RPS language extension

1.1. Definition

The Robotic Programming System or RPS, is an open and adaptable package of tools and software that
offers a complete control and management of a robot system, reducing programming and optimizing
productivity.

In this series, the Language Extension block is covered.

The language extension is a dedicated language for robotics base on Trio basic, which improves the
efficiency by reducing the number of lines in your programs. It matches perfectly with the standard Trio
Basic.

RPS has a group of kinematics transformations, advanced control algorithms deliver the possibility to
program in one coordinate system when the machine does not have a direct mechanical connection to
his coordinate system. Once RPS is set in the controller, a selected group of axes will be set as a robot.

In order to activate RPS in the controller, a configuration data to specify the lengths of mechanical links,
operating modes and other information is required.

RPS

RPS language extension 2

2. Kinematic group
KINEMATIC_GROUP is the command that activate RPS and links the required data to the specified robot.
This command must be executed to have RPS set.

The number of axes in the group must match the number of axes used by the KINEMATICS. The axes
must also be ascending order though they do not have to be contiguous.

2.1. Syntax

KINEMATIC_GROUP(index, table offset, kinematic number, axis0 - axisn)

Keyword Description

Index From 0 to 7, it means up to 8 robots can be set in the same controller.

 Table offset Where the robot parameters are set.

Kinematic number Type of robot.

Axis0-axisN Axes belong the robot. They have to be in increase order

2.2. Behaviour

It is possible to know if RPS is set and all information related to it by executing
KINEMATIC_GROUP(index). The format shown is as below:

Group index [table_offset] [kinematic number]: axes TO={index [name] : TOOL_OFFSET parameters}
RF={index [name] : ROBOT_FRAME parameters} OB={index [name] : OBJECT_FRAME parameters}
CO{active collision objects}

 Although 8 kinematics can be initialised on a controller it may not be possible to process all 8 at
a given SERVO_PERIOD. The number that can be run depends on many factors including, which
kinematic is selected, drive connection method, if OBJECT_FRAME, ROBOT_FRAME,
TOOL_OFFSET or COLLISION_OBJECT is enabled and additional factory communications.

 For more information and details about type of supported robots and how to set up the data for a
robot refer to pick and learn series: Kinematics transformation block.

 The number of axes in KINEMATIC_GROUP must match the number of axes used by the kinematic
number selected. The axes must also be ascending order though they do not have to be
contiguous.

RPS

RPS language extension 3

The active COLLISION_OBJECTS value is in binary shown as a decimal format.

Example:

KINEMATIC_GROUP(0)

Terminal:

0 [0] [19] : 10, 11, 12, 13, 14, 15 TO={0[TO_default]:0.00000, 0.00000,

0.00000, 0.00000, 0.00000, 0.00000} RF={0[RF_default]:0.00000, 0.00000,

0.00000, 0.00000, 0.00000, 0.00000} OF={0[OF_default]:0.00000, 0.00000,

0.00000, 0.00000, 0.00000, 0.00000} CO{3}

RPS can easily be disabled by using KINEMATIC_GROUP(index,-1), all the axes in the group will be
released.

 All the axes of the group have to be IDLE, if not, the run time error “Operation cannot be
performed until IDLE” will be thrown.

RPS

Frame and Tools 4

3. Robot selection and program types

3.1. Robot selection

RPS is capable of have configured up to 8 robots in the same system. In order to let the program knows
what Robot should direct all subsequent motion commands and other parameters to read/write, a
robot has to be selected first. To do this, ROBOT(robot ID) command has to be used.

Once a Robot is selected, it will stick to that process until the movements produced by that process are
finished and program stops. So, if a program stops (process finishes) then the Robot will not be
released until buffers are idle.

It is possible to check what process hold a particular Robot by reading ROBOT(robot ID) command as
follow:

my_robot = ROBOT(0)

Deselect a robot from its process is possible using -1 index as follow:

ROBOT(-1)

This will release the Robot from the process that is selected only if ROBOT(-1) is executed in the
same process than the selected Robot.

STOP_ROBOT(robot ID) will cancel moves, clear buffers and stop process belonging from the selected
robot index. This command can be called from other process, making easier to control a robot or group
of robots from a main program.

DISABLE_ROBOT(boolean flag) :

This command will inhibit any robot programs from running. If any programs are already running on a
process, it will be stopped, and the buffers will be cleared.

DISABLE_ROBOT(TRUE) will activate the command and DISABLE_ROBOT(false) will deactivate it.

3.2. Program types

There are two different robot program types: robot programs and basic robot programs. All robot
program types can be fully edited by Motion Perfect.

3.2.1 Robot Program

Robot programs contain just the instructions that TPS can handle. All the MOVE instruction, Structures
(While, If, Repeat, For structures), function calls, labels among other robot instructions. This type of
program will have a ‘.ROB’ file extension.

RPS

Frame and Tools 5

3.2.2 Robot Basic Program

Robot Basic Programs can contain all the existing Trio instructions (same as a BASIC program). Also,
Robot Basic Program can be edited by TPS but for user levels 1 and the commands that are not in a
guided form will be inserted by “type in” form.

Users can write complex programs as Robot Basic programs to have more control over their application.
It is important to use this type of program and NOT a BASIC program as the controller can kill this type
of program in case of an emergency.

This type of program will have ‘.RBS’ file extension

3.3.3 Robot Library

Robot Library contains user functions for the robot application. TPS can read this file and list all the
functions in the Teach pendant. The allowed commands in this type of file are the same as the syntax
allowed in a Basic Library.

This type of library will have a ‘.ROBLIB’ file extension.

3.1. Program Pointer

A robot program or a robot basic program can be run in two ways.

A normal RUN operation will run the selected program normally. The running program can be paused or
stopped anytime while it is running.

Additionally, users can select a line and start running the program from the line. If multiple robots are
present, the currently active robot will be selected, and all MOVE commands will be run on the selected
robot. This can be changed by selecting another robot from the program or from the UI (MP or TPS). This
allows more flexibility while testing.

This feature is only available in TPS and can be used only on the Teach Pendant. It will be coming to
Motion Perfect soon.

RPS

Frame and Tools 6

4. Frames and Tools

4.1. Definition

Frames and tools are a 4x4 orthogonal matrix by which a position and orientation is completely defined.
They are defined for a 3-axis translation and rotation. The rotations are applied using the Euler ZYX
convention. This means that the Z rotation is applied first, then the Y is applied on the new coordinate
system and finally the X is applied. The coordinate system is defined using the ‘right hand rule’ and the
rotation of the origin is defined using the ‘right hand turn’.

Movements are loaded with the selected frame or tool. This means that you can buffer a sequence of
movements on different frames or tools. The active frame or tool is the one associated with the
movement in the MTYPE. If the KINEMATIC_GROUP is IDLE then the active frame or tool is the selected
frame or tool.

The system is compound of the following frames:

• WORLD_FRAME: represent the world coordinate that uniquely fix the system (0, 0, 0 position
and identity matrix for orientation). It specifies the relationship between a moving observer and
the object under observation. It cannot be overwritten but the coordinate system of RPS can be
modified by using an OBJECT_FRAME.

• OBJECT_FRAME: on an object, it can change the coordinate system to program from. Once an
OBJECT_FRAME is applied, the robot and all the points will be related to it.

• ROBOT_FRAME: on the robot base, it can change the position and orientation of the robot
related to the active coordinate system (WORLD_FRAME as default or OBJECT_FRAME). Setting
this frame the TCP (Tool Centre Point) is always related to WORLD_FRAME or OBJECT_FRAME,
no matter what position the robot is.

• TOOL_OFFSET: offset between the TCP and the end-effector of the robot. It sets a distance and
orientation of a tool from the end effector to the TCP. If no TOOL_OFFSET is applied, the TCP is
at the end-effector of the robot.

• TOOL_COLLISION: data to build a bound box around the tool. For more information, please refer
to Collision detection section.

 Frames are applied on the axis KINEMATIC_GROUP. If no KINEMATIC_GROUP is defined then a
runtime error will be generated.

RPS

Frame and Tools 7

4.2. Syntax

OBJECT_FRAME (identity, name, x offset, y offset, z offset, x rotation, y rotation, z rotation)

Example:

OBJECT_FRAME(1,"camera",200,0,400,0,180,0)

TOOL_COLLISION(identity, name, x centre, y centre, z centre, half distance x, half distance y, half distance
z)

The dimension of the tool collision should be taken as the maximum dimension that the tool can be. For
example, if the tool is a gripper, use the gripper open dimension as described in the picture below.

 X offset, y offset and z offset have to be specified in mm.

X rotation, y rotation and z rotation have to be specified in degrees.

 Same syntax for ROBOT_FRAME and TOOL_OFFSET.

Figure 4-1: Coordinate system scenario.

RPS

Frame and Tools 8

4.3. Behaviour

There are up to 32 entries for every frame or tool offset, starting at index 1 until 31. Index 0 is the default
one with values “TO_default” : 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,

0.00000 and it is not possible to modify or remove.

Frames and tool offset have to be created, using the corresponding command and the desired values,
before using them.

Example:

TOOL_OFFSET(1,"Gripper",100,50,0,0,0,0)

The entries can be modified at any time (except the active ones) with a new values.

Example:

Terminal:

0 [TO_default] : 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

1 [Gripper] : 100.00000, 50.00000, 0.00000, 0.00000, 0.00000, 0.00000

TOOL_OFFSET(1,"Torch",200,0,50,0,45,0)

Terminal:

0 [TO_default] : 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

1 [Torch] : 200.00000, 0.00000, 50.00000, 0.00000, 45.00000, 0.00000

Remove an entry is possible using the parameters -2 and index.

Terminal:

0 [TO_default] : 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

1 [Torch] : 200.00000, 0.00000, 50.00000, 0.00000, 45.00000, 0.00000

2 [Gripper] : 150.00000, 50.00000, 0.00000, 0.00000, 0.00000, 0.00000

 Parameter name is optional and unique, if not used the system leaves it empty.

 If an entry with different index is created with the name of an existing entry, the system throws the
run time error “Duplicate Identifier”.

Figure 4-2: Tool collision dimensions.

RPS

Frame and Tools 9

5 [Pencil] : 200.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

16 [Needle] : 300.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

TOOL_OFFSET(-2,2)

Terminal:

0 [TO_default] : 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

1 [Torch] : 200.00000, 0.00000, 50.00000, 0.00000, 45.00000, 0.00000

5 [Pencil] : 200.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

16 [Needle] : 300.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

Request for existing entries is possible with parameter -1. It returns the existing ones plus the entry 0
(default). If the parameters are (-1, index) it returns only the requested index.

Example:

OBJECT_FRAME(-1)

Terminal:

0 [OF_default] : 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000

1 [of2] : 517.35967, 0.41128, 950.75573, 28.23244, -177.09862, -22.97674

2 [of3] : 633.29181, 188.67548, 799.24254, 0.00000, 0.00000, 0.00000

3 [of4] : 633.29181, 188.67548, 799.24254, 0.00000, 90.00000, 0.00000

OBJECT_FRAME(-1,2)

Terminal:

2 [of3] : 633.29181, 188.67548, 799.24254, 0.00000, 0.00000, 0.00000

In order to use a frame or tool, it has to be selected either as a standalone command for a particular
robot or as an embedded parameter (explained in MOVE section). Once it is selected, the system will
use it as the active ones. The movements executed after a frame or tool selection will be related to the
active one until it is finished. After finalize the movement a new frame or tool can be selected but it will
be active once the movement is finished. With this methodology a “on the fly” selection of frame or tool
is possible and gives to the programmer more flexibility.

To select a frame or tool just simply invoke the command with the index or name desired as a parameter.

Example:

OBJECT_FRAME(”of3”)

 Remove all entries using just the parameter -2.

 If an entry is being selected it cannot be modifying or deleted, throwing the runtime error “TOOL
cannot be modifying or delete while selected.

 If you wish to check which OBJECT_FRAME, ROBOT_FRAME or TOOL_OFFSET are active you can
print the details to the terminal using KINEMATIC_GROUP(group).

RPS

Frame and Tools 10

It is possible to request which tool or frame is active by assigning the return value of the commands
TOOL_OFFSET, OBJECT_FRAME or ROBOT_FRAME with no parameters.

Example:

i = OBJECT_FRAME

RPS

TARGET data type 11

5. TARGET data type

5.1. Definition

Target is a datatype to store position and orientation in the space and commonly used in move
commands to move the robot at. Targets can be local or global, storing Cartesian or Joint positions.

5.2. Cartesian

Target points can be taught/declared in cartesian workspace by using GTA for global use and TARGET for
local use.

5.2.1. TARGET

TARGET is a local variable that stores a cartesian point. Local variables are deleted when the program
that declared them stops running.

5.2.2. GTA

Global Target Array is global data type that stores cartesian target points (position and orientation) and
is accessible from all programs. GTAs are saved in flash memory and are not lost on restarting the
controller (similar to VRs).

Interaction with MOVEs

The following combinations are possible and will behave in the described way:

MOVEL GTA

This instruction will move the end effector of the robot to the target point in a straight(linear) line.

MOVEJ GTA

This instruction will move the end effector of the robot to the target point non-linearly. In
other words, the robot will travel linearly in joint space.

MOVEC GTA GTA

This instruction will move the end effector of the robot in a circle.

 Targets are related with the active coordinate system at the moment of its use. If a target has
been stored related to another coordinate system than the active one, the robot will not move
to the expected target. Make sure the selected frame or tool offset is the same used at the
moment to store the target.

 The robot will go the cartesian target in its current configuration (and not the configuration the
point was taught in)

RPS

TARGET data type 12

All other combinations will trigger an error.

5.3. Joint

Target points can be taught/declared in cartesian workspace by using GTAJ for global use and
TARGETJ for local use.

5.3.1. TARGETJ

TARGET is a local variable that stores a cartesian point. The data format is same as GTA. Local variables
are deleted when the program that declared them stops running

5.3.2. GTAJ

Global Target Array Joint is a global variable that stores joint target points and is accessible from all
programs. GTAJs are saved in flash memory and are not lost on restarting the controller (similar to VRs).
In joint mode, GTAJs have the following data format:

 GTA(‘ID number’) = θ1, θ2, θ3, θ4, θ5, θ6, “point name as string”

Interaction with MOVEs

The following combinations are possible and will behave in the described way:

MOVEL GTAJ
The controller will calculate the linear target point using the joint co-ordinates. Then end effector of
the robot will then move to the target point linearly.

MOVEJ GTAJ

The robot will move to the joint target point in joint mode. It will travel linearly in joint space.

All other combinations will produce an error.

GTA and GTAJ share the same workspace, meaning there can only be a maximum of 1000 Global Targets
(cartesian and joint combined). Users cannot have separate indices, for example:
GTA(1) = X1, Y1, Z1, U1, V1, W1, “pt1”

GTAJ(2) = t1, t2, t3, t4, t5, t6, “pt2”

In this example, GTAJ cannot have an index 1 and GTA cannot have index 2.

5.4. Syntax

• Global target:

GTA(index number) = float x, float y, float z, float u, float v, float w, string name

 If the robot is in a different orientation (as compared to the taught joint position) it will NOT
change its configuration. The robot will move to the calculated cartesian position in the
current configuration.

RPS

TARGET data type 13

GTAJ(index numb) = float θ1, float θ2, float θ3, float θ4, float θ5, float θ6, string name

Example:

GTA(10) = 100,0,50,180,0,180,"Cartesian_point1"

GTAJ(20) = -10,50,10,0,15,0,"Joint_point1"

• Local target:

name = float x, float y, float z, float u, float v, float w

Example:

my_local_target = 250,0,150,180,0,180

5.5. Behaviour

Local targets have to be declared in the program from they will be called using the DIM declaration and
can be only seen from it.

Example:

DIM point1 AS TARGET

It is possible to have up to one-dimension array of local targets by defining the size of it in the declaration
statement.

Example:

DIM point4 AS TARGET(10)

Global target (GTA) is a fixed array of 1000 values and can be defined and called from all the programs.

It is possible to have read and write access to a bit part of a GTA or local target using “.” at the end of
the command. It could be x, y, z, u, v, w, id or active.

Keyword Description

x, y, z, u, v, w 64bit floating point number

Id (GTA only) String name

Active (GTA only) Boolean

 Name is optional and unique.

 A GTA cannot be declare using a name instead of an id number. If so, the run time error “ID not
defined” will be thrown.

 By default, all GTAs are deactivated until are declared and executed. Even if they are declared but
not executed, they will not be seen from any command, throwing a run time error “Target point
not activated”.

RPS

TARGET data type 14

Example:

GTA(10).x = 250

my_variable = GTA(10).x

Throught the Boolean property “active”, it is possible to activate or deactivate and clear a GTA. If active
property is assigned to false, the GTA will be erased (all values to 0 and empty name) and deactivated
(not seen from any program).

Example:

GTA(10).active = FALSE

A range of GTAs can be requested or assigned by specifying the start and end index separated by comma.

Example:

GTA(10,13) = 250,0,150,180,0,180

PRINT GTA(10,13)

Terminal:

250.00000,0.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,0.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,0.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,0.00000,150.00000,180.00000,0.00000,180.00000,""

GTA(10,12).y = 35

PRINT GTA(10,13)

Terminal:

250.00000,35.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,35.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,35.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,0.00000,150.00000,180.00000,0.00000,180.00000,""

GTA(20,23) = GTA(10)

PRINT GTA(20,23)

Terminal:

250.00000,35.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,35.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,35.00000,150.00000,180.00000,0.00000,180.00000,""

250.00000,0.00000,150.00000,180.00000,0.00000,180.00000,""

Assignments between GTA – GTA, GTA – Local Target and Local target – Local target is possible.

Example:

GTA(10).x = GTA(11).x

my_target = GTA(10)

 If the name parameter is specified range assignment cannot be done due to incompatibility of
duplicated identified names.

RPS

TARGET data type 15

5.1. Robot Position

The current position of the robot is stored in two system variables, ROBOT_LPOS and ROBOT_JPOS.

5.1.1. ROBOT_LPOS

ROBOTL_POS is of datatype TARGET and stores the cartesian position of the end effector. Individual
elements can be accessed, for example, TARGET_LPOS.x will return the current X position of the end
effector. This is a read-only system variable.

This can be used in programs to know the position of the robot.

Example:

DIM my_variable AS TARGET

DIM x_pos AS FLOAT

my_variable = ROBOT_LPOS

x_pos = my_variable.x

5.1.2. ROBOT_JPOS

ROBOTJ_POS is of datatype TARGET and stores the joint position of the end effector. Individual joint
positions can be accessed, for example, TARGET_JPOS.x will return the current position of Joint 1 of the
robot. This is a read-only system variable.

This can be used in programs to know the position of the axes of the robot.

Example:

DIM my_variable AS TARGETJ

DIM j3_pos AS FLOAT

my_variable = ROBOT_JPOS

x_pos = my_variable.z

RPS

Move commands 16

6. Move commands

6.1. General overview

RPS has a group of move commands by which is possible to move a robot from one position to another
in multiples ways.

It is possible to modify the behaviour of the movement according to some parameters. Those parameters
could be set embedded into the move instruction or as a standalone command. As standalone
commands overwrite the default ones and are applied to all subsequent motion instructions, so all the
moves after that action will be performed with the new parameter value. As embedded parameter only
affect to the belonging move instruction. If a move instruction has no parameter or just a few it will use
the default values for any missing parameter. The order of embedded parameters does not affect to the
move instruction.

Standalone

parameters

Embedded parameters Parameter Range

WORLD_POS_SPEED:
linear speed mm/s S

MOVEL :[0, WORLD_POS_MAX_SPEED]

MOVEC :[0, WORLD_POS_MAX_SPEED]

WORLD_ORI_SPEED:
joint speed deg/s

S MOVEJ :[0, WORLD_ORI_MAX_SPEED]

WORLD_MAX_ACC A Percentage of WORLD_MAX_ACC [1 - 100]

WORLD_MAX_ACC D Percentage of WORLD_MAX_ACC [1 – 100]

TOOL_OFFSET T

[0 - 31]

OBJECT_FRAME O

[0 - 31]

ROBOT CONFIGURATION C

SCARA : {0, 1}

6 Axis Anthropomorphic : {0,1,2,3,4,5,6,7}

Palletizing : {0}

PRECISION_ZONE

ZF: orientation changes

from start until the end of

blend curve.

ZT: orientation changes

along blend curve.

[0 - Length of move]

RPS

Move commands 17

Interrupt by path
percentage IP [0 - 200]

Interrupt by input
number II Input number depending on the controller.

Interrupt by time IT [0, ∞) mS

Routine Output RO Output number depending on the controller

Speed

Speed can be specified as default parameter for linear and for orientation movements, using
WORLD_POS_SPEED for linear speed in mm/s and WORLD_ORI_SPEED in deg/s for joint speed. Its
embedded parameter is ‘S’ and it will mean linear speed if it is used in linear movements, such as MOVEL,
MOVEC or MOVELREL. In the same way, ‘S’ will mean joint speed if it is used with joint movements, like
MOVEJ or MOVEJREL.

Accel

Acceleration is specified as default parameter in ROBOT_DEFINITIONS file through the commands
WORLD_POS_MAX_ACC for linear axes and WORLD_ORI_MAX_ACC for orientation axes. Its embedded
parameter is ‘A’ and it can be set as a % of the acceleration specified in ROBOT_DEFINITIONS. The values
go between 1 (1 % of the specified acceleration) to 100 (100% of the specified acceleration).

Decel

Deceleration is specified as default parameter in ROBOT_DEFINITIONS file through the commands
WORLD_POS_MAX_ACC for linear axes and WORLD_ORI_MAX_ACC for orientation axes. Its embedded
parameter is ‘D’ and it can be set as a % of the deceleration specified in ROBOT_DEFINITIONS. The values
go between 1 (1 % of the specified deceleration) to 100 (100% of the specified deceleration).

Configuration

The robot configuration is always overwritten by the current configuration and it is only possible to use
it in MOVEJ. It means, if a MOVEJ command is executed with a different configuration than the current
one, the next move instruction will use the new robot configuration. This will prevent singularities
because consecutive linear moves cannot have different robot configurations.

RPS

Move commands 18

Interrupt by path percentage

An interrupt will be generated when the robot reaches the specified path percentage. The interrupt
will turn ON / OFF the specified Routine Output.

Example:

MOVEL GTA(10) IP:=50 RO:=9,ON

In this example, output number 9 will be turned ON when the robot finishes 50% of the move to GTA
10.

The range of this parameter is from 0 to 200. The interrupt can be generated even while the robot is
blending two moves. This can be done by specifying IP from 100 to 200.

Example:

MOVEL GTA(10) Z:=30 IP:=130 RO:=9,ON

In this example, the output 9 will be turned ON when the robot finishes 30% of the blend curve.

If there is no blending in a move and an IP > 100 is specified, no action will be taken.

Interrupt by input number

The specified Routine output will be turned ON / OFF when the input specified in II (input interrupt)
gives a rising / falling edge.

Example:

MOVEL GTA(10) II:=3,ON RO:=9,ON

In this example, when input 3 gives a rising edge (goes from low to high) output 9 will be turned ON
while the MOVE is being executed.

If input 3 turns ON after the move finishes, no action will be taken.

Interrupt by time

The specified routine output will be turned ON / OFF after the time specified in IT (input time) is
reached.

Example:

MOVEL GTA(10) IT:=700 RO:=9,ON

In this example, output 9 will be turned ON after 700mS after the move starts.

If the move finishes earlier than 700mS, no action will be taken.

Routine Output

The output specified in RO (routine output) will be turned ON / OFF when any of the conditions
specified by IP (interrupt percentage), II (Interrupt input) or IT (interrupt time) is met. If the output is
already in the specified status, no further actions will be taken if the condition is meet.

RPS

Move commands 19

6.2. Precision zone

Precision zone parameter is the degree of approximation of the manipulator’s end effector to a taught
point.

If a point to point trajectory must pass exactly through every point, then the trajectory must stop at each
point where the direction of the path changes. Otherwise, there will be discontinuities in the velocity
profile of the trajectory. These stops can be avoided by allowing the path to deviate slightly from the
points, using blends curves to smooth the path near the point while changing directions but not stopping.

The system allows use this method to smooth transition between any two straight lines generated by
MOVEL instructions.

It is not possible to control the transition shape. However, a tightness parameter is provided to measure
how closely the trajectory must approach a given point before blending to the nest one.

There are two precision parameters: ZF and ZT. Both specify the tightness of the blend curve in mm but
ZF also indicates to the system that the orientation changes will be performed from the start of the
straight line until the end of the blend curve, meanwhile ZT indicates that the orientation changes will
be done entirely along the blend curve.

Figure 6-1: precision zone curve

RPS

Move commands 20

6.3. MOVEJ

Definition

MOVEJ is used to move the robot from one point to another along a non-linear path. All axes reach the
destination position at the same time. It is the fastest type of movement due to the axes move the exact
amount of degrees needed to reach the desired position.

The speed of the move is an interpolated speed and NOT the speed of any individual axis or the end
effector.

For Example: a robot has to move from 10.5,0,20,0,0,0 in joint position to 90.21,44.2,24.1,4.1,0.0,12.2
with the speed 50.

The speed 50 will be applied to the total position change, (90.21 - 10.5 + 44.22-0 + 24.1-20 + 4.1-0 + 0-0
+ 12.2 - 0) = 144.33

The robot will cover the distance 144.33 with the speed 50. Individual axes may travel at a higher or a
lower speed than 50 but all of them will reach end position at the same time.

Syntax

MOVEJ target [S:= T:= O:= C:= Z:= A:= D:=]

Examples

GTA(0) = 350, 0, 50, 180, 0, 0, "p1"
GTA(1) = 400, 100, 20, 180, 0, 0, "p2"
GTA(2) = 450, -300, 60, 180, 0, 0, "p3"
OBJECT_FRAME(1,"of1", -10, 0, 0, 0, 0, 15)
TOOL_OFFSET(1,"tool1", 0, 0, 50, 0, 0, 0)

ROBOT(0)
MOVEJ GTA("p1")
MOVEJ GTA("p2")
MOVEJ GTA("p3")
STOP

This example commands Robot 0 to Move linearly to target point 0. Note that there are no other
embedded instructions in the MOVE. This instruction will MOVE the robot to target point 1 using the
following parameters.

Type Parameter

Object Frame Currently active object frame

RPS

Move commands 21

Tool Offset Currently active tool offset

Speed [𝒅𝒆𝒈/𝒔] WORLD_ORI_SPEED*LOOKAHEAD_FACTOR

Acceleration [𝒅𝒆𝒈/𝒔𝟐] WORLD_ORI_MAX_ACC

Jerk [𝒅𝒆𝒈/𝒔𝟑] WORLD_ORI_MAX_JERK

Blend radius [𝒎𝒎] 0

Configuration 0

MOVEJ GTA("p1") S:=100

Type Parameter

Speed[𝒅𝒆𝒈/𝒔] 100*LOOKAHEAD_FACTOR

MOVEJ GTA("p1") O:="of1"

Type Parameter

Object Frame Object Frame 1

Speed[𝒅𝒆𝒈/𝒔] WORLD_ORI_SPEED*LOOKAHEAD_FACTOR

MOVEJ GTA("p1") T:="tool1"

Type Parameter

Object Frame Currently active object frame

Tool Offset Tool Frame 1

 Frame 1 is not set as the active object frame. This instruction only takes Frame 1 into consideration
for this move

 Frame 1 is not set as the active tool frame. This instruction only takes Frame 1 into consideration
for this move.

RPS

Move commands 22

MOVEJ GTA("p1") Z:=67
MOVEJ GTA("p2")

Type Parameter

Tool Offset Currently active tool offset

Blend radius[𝒎𝒎] 67mm

The robot will go towards target point 0 and 67 before the reaching the target point, it will blend the
next move and go to target point 1.

MOVEJ GTA("p1") S:=150 O:="of1" T:="tool1" Z:=42 C:=0
MOVEJ GTA("p2") S:= 100 C:=1

Type Parameter for MOVE GTA(0) Parameter for MOVE GTA(1)

Object Frame Object Frame 1 Currently active object frame

Tool Offset Tool Offset 1 Currently active tool offset

Speed 150*LOOKAHEAD_FACTOR 100*LOOKAHEAD_FACTOR

Acceleration WORLD_POS_MAX_ACC*JOG_ACC_FA

CTOR

WORLD_POS_MAX_ACC*JOG_ACC_FACT

OR

Jerk WORLD_POS_MAX_JERK WORLD_POS_MAX_JERK

Blend radius 42mm 0

Configuration 0 1

GTA(0) = 350, 0, 50, 180, 0, 0, "p1"
GTA(1) = 400, 100, 20, 180, 0, 0, "p2"
GTA(2) = 450, -300, 60, 180, 0, 0, "p3"
OBJECT_FRAME(1,"of1", -10, 0, 0, 0, 0, 15)
TOOL_OFFSET(1,"tool1", 0, 0, 50, 0, 0, 0)

ROBOT(0)
MOVEJ GTA("p1") S:=80 O:=1 T:=1 Z:=159 C:=1
MOVEJ GTA("p2") S:= 60 C:=0

RPS

Move commands 23

MOVEJ GTA("p3")
STOP

Figure 6-2: Trace of Example Program

RPS

Move commands 24

6.4. MOVEL

Definition

MOVEL is used to move the robot from one point to another along a linear path. The end effector moves
along the straight line between current point and target point in cartesian space. All axes reach the
destination position at the same time.

Syntax

MOVEL target [S:= T:= O:= ZT:= ZF:= A:= D:=]

Examples

GTA(0) = 350, 0, 50, 180, 0, 0, "p1"
GTA(1) = 400, 100, 20, 180, 0, 0, "p2"
GTA(2) = 450, -300, 60, 180, 0, 0, "p3"
OBJECT_FRAME(1,"of1", -10, 0, 0, 0, 0, 15)
TOOL_OFFSET(1,"tool1", 0, 0, 50, 0, 0, 0)

ROBOT(0)
MOVEL GTA("p1")
MOVEL GTA("p2")
MOVEL GTA("p3")
STOP

This example commands Robot 0 to Move linearly to target point 0. Note that there are no other
embedded instructions in the MOVE. This instruction will MOVE the robot to target point 1 using the
following parameters.

Type Parameter

Object Frame Currently active object frame

Tool Offset Currently active tool offset

Speed [𝒎𝒎/𝒔] WORLD_ORI_SPEED*LOOKAHEAD_FACTOR

Acceleration [𝒎𝒎/𝒔𝟐] WORLD_ORI_MAX_ACC*JOG_ACC_FACTOR

Jerk [𝒎𝒎/𝒔𝟑] WORLD_ORI_MAX_JERK

Blend radius [𝒎𝒎] 0

RPS

Move commands 25

MOVEL GTA("p1") S:=100

Type Parameter

Speed[𝒎𝒎/𝒔] 100*LOOKAHEAD_FACTOR

MOVEL GTA("p1") O:="of1"

Type Parameter

Object Frame Object Frame “of1”

Speed[𝒎𝒎/𝒔] WORLD_ORI_SPEED *LOOKAHEAD_FACTOR

MOVEL GTA("p1") T:="tool1"

Type Parameter

Object Frame Currently active object frame

Tool Offset Tool Frame “tool1”

MOVEL GTA("p1") Z:=67
MOVEL GTA("p1")

Type Parameter

Tool Offset Currently active tool offset

Blend radius[𝒎𝒎] 67mm

The robot will go towards target point 0 and 67 before the reaching the target point, it will blend the
next move and go to target point 1.

MOVEL GTA("p1") S:=150 O:="of1" T:="tool1" Z:=42
MOVEL GTA("p1") S:= 100

Type Parameter for MOVE GTA(0) Parameter for MOVE GTA(1)

 Frame 1 is not set as the active object frame. This instruction only takes Frame 1 into consideration
for this move

 Frame 1 is not set as the active tool frame. This instruction only takes Frame 1 into consideration
for this move.

RPS

Move commands 26

Object Frame Object Frame 1 Currently active object frame

Tool Offset Tool Offset 1 Currently active tool offset

Speed 150*LOOKAHEAD_FACTOR 100*LOOKAHEAD_FACTOR

Acceleration WORLD_POS_MAX_ACC*JOG_ACC_FA

CTOR

WORLD_POS_MAX_ACC*JOG_ACC_FACT

OR

Jerk WORLD_POS_MAX_JERK WORLD_POS_MAX_JERK

Blend radius 42mm 0

GTA(0) = 350, 0, 50, 180, 0, 0, "p1"
GTA(1) = 400, 100, 20, 180, 0, 0, "p2"
GTA(2) = 450, -300, 60, 180, 0, 0, "p3"
OBJECT_FRAME(1, -10, 0, 0, 0, 0, 15)
TOOL_OFFSET(1, 0, 0, 50, 0, 0, 0)
ROBOT(0)
MOVEL GTA("p1") S:=280 O:=1 T:=1 Z:=80
MOVEL GTA("p2") S:=360
MOVEL GTA("p3")
STOP

RPS

Move commands 27

Figure 6-3: Trace of Example Program

RPS

Move commands 28

6.5. MOVEC

Definition

MOVEC is used to move the robot from one point to another along a circular path. All axes reach the
destination position at the same time.

Syntax

MOVEC target (middle point) target (end point) [S:= T:= O:= A:= D:=]

Examples

GTA(0) = 350, 0, 50, 180, 0, 0
GTA(1) = 400, 100, 20, 180, 0, 0
GTA(2) = 450, 0, 60, 180, 0, 0
OBJECT_FRAME(1,"of1", -10, 0, 0, 0, 0, 15)
TOOL_OFFSET(1,"tool1", 0, 0, 50, 0, 0, 0)

ROBOT(0)
MOVEC GTA("p1") GTA("p2")
MOVEL GTA("p3")
STOP

This example commands Robot 0 to Move linearly to target point 0. Note that there are no other
embedded instructions in the MOVE. This instruction will MOVE the robot to target point 1 using the
following parameters.

Type Parameter

Object Frame Currently active object frame

Tool Offset Currently active tool offset

Speed [𝒎𝒎/𝒔] WORLD_ORI_SPEED*LOOKAHEAD_FACTOR

Acceleration [𝒎𝒎/𝒔𝟐] WORLD_ORI_MAX_ACC*JOG_ACC_FACTOR

Jerk [𝒎𝒎/𝒔𝟑] WORLD_ORI_MAX_JERK

Blend radius [𝒎𝒎] 0

MOVEC GTA("p1") GTA("p2") S:=100

RPS

Move commands 29

Type Parameter

Speed[𝒎𝒎/𝒔] 100*LOOKAHEAD_FACTOR

MOVEC GTA("p1") GTA("p2") O:="of1"

Type Parameter

Object Frame Object Frame 1

Speed[𝒎𝒎/𝒔] WORLD_ORI_SPEED *LOOKAHEAD_FACTOR

MOVEC GTA("p1") GTA("p2") T:="tool1

Type Parameter

Object Frame Currently active object frame

Tool Offset Tool Frame 1

MOVEC GTA("p1") GTA("p2") Z:=67
MOVEL GTA("p3")

Type Parameter

Tool Offset Currently active tool offset

Blend radius[𝒎𝒎] 67mm

The robot will go towards target point 0 and 67 before the reaching the target point, it will blend the
next move and go to target point 1.

MOVEC GTA("p1") GTA("p2") S:=150 O:="of1" T:="tool1" Z:=42
MOVEL GTA("p3") S:= 100

 Frame 1 is not set as the active object frame. This instruction only takes Frame 1 into consideration
for this move

 Frame 1 is not set as the active tool frame. This instruction only takes Frame 1 into consideration
for this move.

RPS

Move commands 30

Type Parameter for MOVE GTA(0) Parameter for MOVE GTA(1)

Object Frame Object Frame 1 Currently active object frame

Tool Offset Tool Offset 1 Currently active tool offset

Speed 150*LOOKAHEAD_FACTOR 100*LOOKAHEAD_FACTOR

Acceleration WORLD_POS_MAX_ACC*JOG_ACC_FA

CTOR

WORLD_POS_MAX_ACC*JOG_ACC_FACT

OR

Jerk WORLD_POS_MAX_JERK WORLD_POS_MAX_JERK

Blend radius 42mm 0

GTA(0) = 350, 0, 50, 180, 0, 0, "p1"
GTA(1) = 400, 100, 20, 180, 0, 0, "p2"
GTA(2) = 450, -300, 60, 180, 0, 0, "p3"
OBJECT_FRAME(1,"of1", -10, 0, 0, 0, 0, 15)
TOOL_OFFSET(1,"tool1", 0, 0, 50, 0, 0, 0)

ROBOT(0)
MOVEC GTA("p1") GTA("p2") S:=150 O:="of1" T:="tool1"
MOVEL GTA("p3") S:= 100
STOP

RPS

Move commands 31

 Figure 6-4: Trace of Example Program

RPS

Move commands 32

6.6. MOVEJREL

Definition

MOVEJREL is used to move the robot from one point to another, relative to the starting position, along
a non-linear path. All axes reach the destination position at the same time. It is the quickest type of
movement due to the axes move the exact amount of degrees needed to reach the desired position.

The speed of the move is an interpolated speed and NOT the speed of any individual axis or the end
effector.

A single joint can be moved by simply set all values of the target as 0 except the desired joint to move.

Syntax

MOVEJREL target [S:= T:= O:= C:= Z:= A:= D:=]

Examples

GTA(0) = 0,-20,0,0,0,0

ROBOT(0)
MOVELREL GTA(0) 'The robot will move 20 degrees of the second joint in negative direction from its
current position
STOP

RPS

Move commands 33

6.7. MOVELREL

Definition

MOVELREL is used to move the robot from one point to another, relative to the starting position, along
a linear path. The end effector moves along the straight line between current point and target point in
cartesian space. All axes reach the destination position at the same time.

A single vector can be moved by simply set all values of the target as 0 except the desired vector to move.

Syntax

MOVELREL target [S:= T:= O:= ZT:= ZF:= A:= D:=]

Examples

GTA(0) = 10,0,0,0,0,0

ROBOT(0)
MOVELREL GTA(0) 'The robot will move 10mm in X from its current position

STOP

RPS

Jogging 34

7. Jogging

7.1. Definition

Jog is the manual process of move the axes of the robot in positive or negative direction, or moves the
TCP along the specified Cartesian direction.

7.2. Syntax

JOG_OPERATION(mode)

7.3. Behaviour

To jog the robot is needed to set a FWD_IN and REV_IN for each robot axis.

After setting all the inputs, jog mode has to be set using JOG_OPERATION command. Change the jog
mode to activate the process and use FWD_IN and REV_IN inputs to jog the robot. Set jog mode back to
0 to release jog process for the execution of move instructions.

There are five modes to jog the robot:

• JOINT (mode = 1): each axis moves independently.

 Default jog mode is 0, it means disable.

 Inputs used for FWD_IN and REV_IN are active low.

 Jog cannot be performed until axes are idle.

 JOG_OPERATION command has to be executed in the same base array of the robot.

RPS

Jogging 35

• WORLD (mode = 2): the end effector moves straight along
the world coordinate system. The orientation use extrinsic
rotations.

• BASE (mode = 3): the end effector moves straight along the
base coordinate system. The orientation use extrinsic rotations.

• TOOL jog (mode = 4): the end effector moves straight
along the tool coordinate system. The orientation use
intrinsic rotation.

• OBJECT (mode = 5): the end effector moves straight along
the active object frame. The orientation use extrinsic rotations.

RPS

Jogging 36

 Extrinsic rotations are elemental rotations that occur about the axes of the fixed coordinate system
XYZ. The XYZ system rotates, while XYZ is fixed. Intrinsic rotations are elemental rotations that
occur about the axes of the rotating coordinate system XYZ, which changes its orientation after
each elemental rotation.

RPS

Singularities 37

8. Singularities
In a singular position, the end effector cannot move in certain direction, thus the manipulator loses one
or more degrees of freedom (DOF). Furthermore, near singular configuration, some axes can move to a
very large speed in order to maintain the end effector speed constant.

In a 6 DOF robot arm, the most common singular positions are described below:

• Wrist singularity occurs when the wrist and the first orientation axis are collinear.

• Elbow singularity occurs when the arm is fully extended.

Figure 8-1: Wrist singularity.

Figure 8-2: Elbow singularity.

RPS

Singularities 38

• Alignment singularity occurs when the wrist and the base are aligned.

If a singular position is reached or is close enough and the system is not in joint mode, a ROBOTSTATUS
error will be triggered at the involved axis and the robot will stop at the configured WORLD_FASTDEC.

 To leave the singular position the system has to be in joint mode.

Figure 8-3: Alignment singularity.

RPS

Robot configurations 39

9. Robot configurations
The system can solve the kinematics for a particular position and orientation of the TCP in up to eight
different axis configurations. The different configurations can be specified by the embedded motion
parameter “C”.

 C parameter can be only used in MOVEJ instruction with values from 0 to 7.

Figure 9-1: C := 0, Wrist no flip, elbow above, base forward. Figure 9-2: C := 1, Wrist flip, elbow above, base forward.

Figure 9-3: C := 2, Wrist no flip, elbow below, base forward. Figure 9-4: C := 3, Wrist flip, elbow below, base forward.

RPS

Robot configurations 40

Figure 9-5: C := 4, Wrist no flip, elbow below, base backward. Figure 9-6: C := 5, Wrist flip, elbow below, base backward.

Figure 9-7: C := 6, Wrist no flip, elbow above, base backward. Figure 9-8:C := 7, Wrist flip, elbow above, base forward.

RPS

Errors 41

10. Limits

10.1. Definition

All the next limits can be scaled by its respective UNITS.

Limits in axis joints:

AXIS_FS_LIMIT: AXIS_DPOS is greater than AXIS_FS_LIMIT. This refers to joint angle limit.

AXIS_RS_LIMIT: AXIS_DPOS is greater than AXIS_RS_LIMIT. This refers to joint angle limit.

AXIS_MAX_SPEED: Maximum allowed axis speed. If the actual speed exceeds this value, error ‘max
speed limit exceeded’ will be triggered.

AXIS_MAX_ACC: Maximum allowed axis acceleration/deceleration.

AXIS_MAX_JERK: Maximum allowed axis jerk.

AXIS_MAX_JOG_SPEED: Maximum allowed jog speed.

AXIS_MAX_JOG_ACC: Maximum allowed jog acceleration.

Limits in world mode:

WORLD_POS_MAX_SPEED: Maximum linear speed.

WORLD_POS_MAX_ACC: Maximum linear acceleration.

WORLD_POS_MAX_JERK: Maximum linear jerk.

WORLD_ORI_MAX_SPEED: Maximum orientation speed.

WORLD_ORI_MAX_ACC: Maximum orientation acceleration.

WORLD_ORI_MAX_JERK: Maximum orientation jerk.

RPS

Errors 42

11. Parasitic Compensation
Some robots have a mechanical link between 2 axes. This causes one axis to move when the other
linked axis moves, causing parasitic motion. To compensate this type of motion, COMP_RATIO can be
used.

11.1. Syntax

COMP_RATIO(driving_axis, ratio_numerator, ratio_denominator)

11.2. Description

This function links the DEMAND_EDGES of base axis to the measured movements of the driving axes to
compensate mechanical parasitic motion. It will add the compensation pulses to demand edges. When
this function is called, an initial compensation amount will be added to AXIS_DPOS to account for
previous compensation. No motion will occur during this.

COMP_RATIO(-1) will delete any existing COMP_RATIO applied to the base axis.

11.3. Parameters

Standalone parameters Embedded parameters

Axis This parameter specifies the axis to link to.

Ratio numerator

This parameter holds the number of edges the base axis
is required to move per increment of the driving axis.
The ratio numerator value can be either positive or
negative. The ratio numerator is always specified as an
encoder edge ratio.

Ratio denominator

This parameter holds the number of edges the base axis
is required to move per increment of the driving axis.
The ratio denominator value can be either positive or
negative. The ratio denominator is always specified as
an encoder edge ratio.

RPS

Errors 43

Example

master_axis = 3

slave_axis = 2

compensation_value = -18

num = UNITS AXIS(slave_axis) * compensation_value

denom = UNITS AXIS(master_axis) * 360

COMP_RATIO(master_axis,num,denom) AXIS(slave_axis)

RPS

Errors 44

12. Errors

12.1. AXISSTATUS bit definitions

Keyword Bit

AS_LOOKAHEAD_OVERRIDE 0

AS_FE_WARNING 1

AS_COMMS_ERROR 2

AS_REMOTE_DRIVE_ERROR 3

AS_IN_FORWARD_LIMIT 4

AS_IN_REVERSE_LIMIT 5

AS_DATUMING 6

AS_FEEDHOLD 7

AS_FE_EXCEEDS_LIMIT 8

AS_FORWARD_SOFTWARE_LIMIT 9

AS_REVERSE_SOFTWARE_LIMIT 10

AS_CANCELLING_MOVE 11

AS_PULSE_OVER_SPEED 12

AS_OVERRIDE_TO_ZERO 13

AS_MOVE_CANCEL_DONE 14

AS_VOLUME_LIMIT 15

AS_AXIS_FS_LIMIT 16

AS_AXIS_RS_LIMIT 17

AS_ENCODER_OVER_I 18

AS_PSWITCH_FIFO_NOT_EMPTY 19

AS_PSWITCH_FIFO_FULL 20

AS_KINEMATICS_1HOUR 21

AS_BISS_CLEAN_WARNING 22

AS_WORLD_FS_LIMIT 23

RPS

Errors 45

AS_WORLD_RS_LIMIT 24

AS_CANCEL_MODE_3 25

AS_REMOTE_NODE_STATUS_ERR 26

12.2. ROBOTSTATUS bit definitions

Keyword Bit

RS_WORLD_FS_LIMIT 0

RS_WORLD_RS_LIMIT 1

RS_ROBOT_FS_LIMIT 2

RS_ROBOT_RS_LIMIT 3

RS_TCP_FS_LIMIT 4

RS_TCP_RS_LIMIT 5

RS_FE_WARNING 6

RS_FE_EXCEEDS_LIMIT 7

RS_WRIST_SINGULARITY 8

RS_ALIGNMENT_SINGULARITY 9

RS_ELBOW_SINGULARITY 10

RS_MAX_SPEED_LIMIT 11

RS_COLLIDED 12

12.3. Robot log

A log system is provided to store in flash events that can happen at any time. Up to 2048 entries are
stored as a cyclic buffer.

The stored data is compound by: entry index, date and time of the event, controller up time and
message.

Syntax

ROBOT_LOG([Message] | [Range of messages to show])

The messages can be shown as follows:

• No parameters: the whole buffer.

RPS

Errors 46

Example:

Terminal

robot_log

 1 23/Jan/2018 13:15:10 [4618.272] Wrist Singularity axis [4]

 2 23/Jan/2018 13:15:12 [4620.961] Blend max radius reached: 89

Units

 3 23/Jan/2018 13:15:13 [4620.963] Blend max radius reached: 121

Units

 4 23/Jan/2018 13:15:13 [4621.130] Encompassed point:

350,150,550,-120,16,-100

 5 23/Jan/2018 13:15:14 [4622.739] Wrist Singularity axis [4]

 6 23/Jan/2018 13:15:14 [4622.739] Max speed reached: 356.445313

Units/s in axis 5

<END OF LOG>

• One parameter: from that entry until the end.

Terminal

robot_log(3)

 3 23/Jan/2018 13:15:13 [4620.963] Blend max radius reached: 121

Units

 4 23/Jan/2018 13:15:13 [4621.130] Encompassed point:

350,150,550,-120,16,-100

 5 23/Jan/2018 13:15:14 [4622.739] Wrist Singularity axis [4]

 6 23/Jan/2018 13:15:14 [4622.739] Max speed reached: 356.445313

Units/s in axis 5

<END OF LOG>

• Two parameters: from the fist to the last parameter.
Terminal

robot_log(3,5)

 3 23/Jan/2018 13:15:13 [4620.963] Blend max radius reached: 121

Units

 4 23/Jan/2018 13:15:13 [4621.130] Encompassed point:

350,150,550,-120,16,-100

 5 23/Jan/2018 13:15:14 [4622.739] Wrist Singularity axis [4]

It is possible to remove all entries using parameter -1.

ROBOT_LOG(-1)

Store user messages can be done by entering a string parameter:

ROBOT_LOG(“My message”)

RPS

Collision detection 47

13. Collision detection

13.1. Definition

A collision between an Oriented Bounding Box (OBB specified by COLLISION_OBJECT) around a real
object and the OBB specified in TOOL_COLLISION can be detected and controlled by the collision
detection algorithm.

The distance between the TOOL_COLLISION and the active COLLISION_OBJECT(s) is checked every servo
period and the robot will decelerate at FAST_DEC in the case of the collision distance is smaller than the
deceleration distance.

Tool collision object is depicted in green. Collision object is depicted in blue and OBBs bounding robot
links are in red.

The collision algorithm measures the distance between the tool collision object and collision objects and
OBBs of the robot links. If the distance is less than the fast deceleration distance then, the robot will stop
securely to avoid the collision. Be aware that the algorithm uses the tool collision against other objects,
the OBBs of the robot links can collide with collision objects.

 It is recommended to specify the COLLISION_OBJECT and the TOOL_COLLISION slightly bigger than
the real object to have a margin where the tool will stop.

Figure 13-1: Collision detection scenario.

RPS

Collision detection 48

13.2. Syntax

COLLISION_OBJECT(identity, name, x centre, y centre, z centre, x rotation, y rotation, z rotation, x half
distance, y half distance, z half distance)

Keyword Description

x, y and z centres Centre position of the OBB on the object.

x, y and z rotations Orientation of the OBB on the object.

x, y and z half distances Half distances measured in every vector of the OBB.

This draw depicts the parameters of a Collision Object. The frame arrows are in the centre of the object
representing the position and orientation of the object.

Half distances measured in the different vectors are shown with the same colours of their vectors.

A collision object can be activated or deactivated as follows:

• Activate it: COLLISION_OBJECT(identity, ON)

• Deactivate it: COLLISION_OBJECT(identity, OFF)

The same COLLISION_OBJECT can be activated for some kinematic groups and deactivate for some
others.

 X centre, y centre and z centre have to be specified in mm.

X rotation, y rotation and z rotation have to be specified in degrees.

X half distance, y half distance and z half distance have to be specified in mm.

Figure 13-2: Collision object definition

RPS

Collision detection 49

To know what objects are active just simply print KINEMATIC_GROUP.

It cannot be edited if it is active in any kinematic group.

Remove an entry is possible using the parameters -2 and index or just one parameter (-2) to remove all
of them.

Example:

COLLISION_OBJECT(-2)

Request for existing entries is possible with parameter -1. If the parameters are (-1, index) it returns only
the requested index.

Example:

COLLISION_OBJECT(-1,2)

Terminal:

2 [object2] : 350.00000, 0.00000, 50.00000, 0.00000, 0.00000, 150.00000,

50.00000, 50.00000, 50.00000

 Maximum number of COLLISION_OBJECTs active is 10.

RPS

Synchronization 50

14. Synchronisation
It is possible to synchronise the robot TCP with a moving object or with another machine or robot. This
means the robot TCP will move or rotate in the same directions than the synchronized object and
absolute movements on top of it.

There are two methods to synchronise the robot TCP: synchronisation with an object frame and
synchronization with a GTA.

In order to synchronize with an object frame, it has to be attached to some axis first.

14.1. Attach Object Frame

Attach Object Frame is a method to link the vectors of an Object Frame with up to six axes and place it
in a specific position. The object frame will move then according to those axes. There are two different
modes to attach an object frame; one specially designs to work with a conveyor and another one to work
with a multipurpose machine.

Attach Object Frame with a conveyor

As the conveyor can be in different orientations, the object frame can be set in multiples orientations
to match the conveyor. The object frame vector selected will follow the conveyor vector direction.

Syntax

ATTACH_OBJECT_FRAME(control, object frame, syncVector, syncPos, syncAxis)

Parameter Description

Control Select the mode ATTACH_OBJECT_FRAME will work. Value = 1.

Object Frame Object Frame that will be attached. It could be an index or name.

syncVector
Object Frame vector that will be attached to syncAxis. There are 3 possible

values: 1: X, 2: Y, 3: Z

 syncPos Captured position on syncAxis.

 syncAxis Axis to synchronise with.

 As synchronisation and attachment do not get loaded in to the move buffer they are not
cancelled by CANCEL or RAPIDSTOP , a desynchronization or detachment has to be performed.
When a software or hardware limit is reached synchronisation and attachment are immediately
stopped with no deceleration.

 Before attach it, the Object Frame has to be created.

mk:@MSITStore:C:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV4/TrioBASIC.chm::/CANCEL.html
mk:@MSITStore:C:/Program%20Files%20(x86)/TrioMotion/MotionPerfectV4/TrioBASIC.chm::/RAPIDSTOP.html

RPS

Synchronization 51

Example:
A common industry example is pick objects from a pallet and place them onto another station or in a
package. The synchronization could be simplified by using Attach Object Frame technique. An Object
Frame will be placed on the pallet in a specific position. All the objects will be taught related to the Object
Frame “pallet”. The Object Frame “pallet” will be attached to the conveyor using one of the three possible
options: vector X, vector Y or vector Z. Bear in mind that the conveyor could not be perfectly aligned with
the robot, so orientation data of the Object Frame could be used to adjust it.

ATTACH_OBJECT_FRAME(1,"pallet",1,registed_position,11)

After the command is executed, the Object Frame “pallet” will follow the conveyor precisely. At this state,
the robot should be synchronised with the Object Frame “pallet”. Please, go to the next section to
continue with the example.

RPS

Synchronization 52

Attach Object Frame with a multipurpose machine

For machines with more than one axis, it is possible to attach the positions and orientation vectors with
up to 6 axes changing the control parameter. If, for instance, an object frame is attached to a 6 DOF
robot arm, the position and orientation of the object frame will follow the robot TCP.

Syntax

ATTACH_OBJECT_FRAME(control, object frame, axisX, axisY, axisZ, axisU, axisV, axisW, xOffset, yOffset,
zOffset, uOffset, vOffset, wOffset)

Parameter Description

Control Select the mode ATTACH_OBJECT_FRAME will work. Value = 2.

Object Frame Object Frame that will be attached. It could be an index or name.

axisX - axisW
Machine axis number that correspond with the Object Frame vector that will
be attached. Set -1 for non-attached vectors.

xPos - wPos Object Frame position and orientation related to the origin of the Robot.

Example:

ATTACH_OBJECT_FRAME(2,3,-1,11,-1,-1,-1,-1,400,0,400,0,90,0)

Detach Object Frame

Syntax

ATTACH_OBJECT_FRAME(control, object frame)

Parameter Description

Control Select the mode ATTACH_OBJECT_FRAME will work. Value = 4.

Object Frame Object Frame that will be attached. It could be an index or name.

Example:

ATTACH_OBJECT_FRAME(4,"of2")

General behaviour

Request for existing entries is possible by using just index as a parameter in the command. It returns true
or false depending if the entry is already attached or not.

Example:

ATTACH_OBJECT_FRAME("of2")

RPS

Synchronization 53

14.2. Sync to object frame

Once an object frame has been attached, it is possible to synchronize the robot TCP to it with the
command SYNC_TO_OBJECT_FRAME.

Syntax

SYNC_TO_OBJECT_FRAME(control, time, object frame, GTA)

Parameter Description

Control
Select the mode SYNC_TO_OBJECT_FRAME will work. 1 = Sync, 4 = stop

sync, 10 = re-sync to another attached object frame

Time Time to complete the synchronisation in milliseconds.

Object frame Object frame already attached. It could be an index or name.

GTA
GTA related to the object frame synchronised. It could be an index or name.

Set it as -1 for no GTA

It is possible to check if the robot is already synced by interrogating the command SYNC_CONTROL and
the axis of the robot that has been synchronised.

Parameter Description

SYNC_CONTROL
Desync = 0

Synced = 3

Example:

WAIT UNTIL SYNC_CONTROL axis(2) = 3

 In the case of “Stop sync” the only parameters available are Control and Time
SYNC_TO_OBJECT_FRAME(control, time)

RPS

Synchronization 54

Example:

After have attached the Object Frame onto the pallet, the robot has to be synchronised with the Object
Frame and, in this particular case, placed over a specific object (GTA related to the Object Frame “pallet”
previously taught).

SYNC_TO_OBJECT_FRAME(1,1000,"pallet","object_1")

14.3. Sync to GTA

Sync to GTA has been designed for more simple synchronizations. It synchronizes the robot TCP with
one axis in X direction. If the robot is not aligned perfectly with X direction, Object Frame can always be
previously set and selected.

Syntax

SYNC_TO_GTA(control, time, syncPos, syncAxis, object frame, GTA)

Parameter Description

Control
Select the mode SYNC_TO_GTA will work. 1 = Sync, 4 = stop sync, 10 = re-

sync to another GTA.

Time Time to complete the synchronisation in milliseconds.

SyncPos Captured position on syncAxis.

RPS

Synchronization 55

SyncAxis Axis to sync with.

Object frame
Object frame related to selected GTA. Set to 0 (default) for no object frame.

It could be an index or name.

GTA
GTA to sync with. It could be an index or name.

Set it as -1 for no GTA

 In the case of “Stop sync” the only parameters available are Control and Time
SYNC_TO_OBJECT_FRAME(control, time)

It is possible to check if the robot is already synced by interrogating the command SYNC_CONTROL. In
this case, because it is synchronised to axis X, it is not necessary to specify the robot axis.

Parameter Description

SYNC_CONTROL
Desync = 0

Synced = 3

Example:

WAIT UNTIL SYNC_CONTROL = 3

RPS

Synchronization 56

Example:

Products are placed in a conveyor belt randomly and have to be picked and placed to a specific position.
A camera vision system will process the position and orientation of the products, sending this information
to the controller. Depending on the camera technology used, the information could be sent through an
Ethernet socket or using Trio ActiveX. The offsets measured for the camera are related to the camera
origin of coordinate so we need to tell the system where that origin is by the use of OBJECT_FRAME.

Bear in mind that the robot will be synced with X direction, so the X vector of the OBJECT_FRAME should
be aligned with the direction of the conveyor. After set the OBJECT_FRAME in the camera origin, a GTA
should be set with the offset detected. In this example, the camera will send 5 parameters to a table data:

Table 0: X offset, Table 1: Y offset, Table 2: Orientation, Table 3: Conveyor position, Table 4: Detected

Camera Object Frame

RPS

Synchronization 57

Code:

fixed_z = 50 ' Z will always be the same due to conveyor is parallel to the

ground

' Open gripper

OP(gripper,OFF)

SYNC_TO_GTA(4,500) ' Desync in 500ms

WAIT UNTIL SYNC_CONTROL = 0 ' Wait until fully desync

WAIT UNTIL TABLE(4) = 1 ' Wait until product is detected

TABLE(4) = 0 ' Reset product detected

' Set GTA value with camera measured offsets

GTA(0) = TABLE(0), TABLE(1),fixed_z, 180,0, TABLE(2)

' Register conveyor position when camera detects the product

registed_position = TABLE(3)

' Sync to axis 10, GTA(0) in Object Frame “camera” (1) in 2000ms

SYNC_TO_GTA(1,2000,registed_position,10,1,0)

WAIT UNTIL SYNC_CONTROL = 3 ' Wait until fully synced

' Close gripper

OP(gripper,ON)

WA(200) ' Wait for gripper close

SYNC_TO_GTA(4,500) ' Desync in 500ms

WAIT UNTIL SYNC_CONTROL = 0 ' Wait until fully desync

X offset

Y offset Camera Object Frame

RPS

Synchronization 58

STOP

