

TPS: Reference guide

Trio Motion Technology

Trio Robotics Series

First Edition • 2020

Revision: 1.4

Trio Programming Guides are designed to aid learning of the TrioBASIC language through description and
examples. Each one will cover a particular topic and discuss which commands and parameters in the TrioBASIC are

required to complete the task.

A general understanding of TrioBASIC is required and it is recommended to attend an introduction to TrioBASIC
training course. The programming guides are not a replacement for the TrioBASIC help files which can be found in

Motion Perfect as well as the manual which cover each command and parameter in more detail and should be
referenced when required.

Any examples given in the programming guide will work and have been tested on an isolated controller. If you
choose to use these examples on a machine, please take care that it will not cause damage or injury and that they

are correctly included in the project changing parameters and values where required.

All goods supplied by Trio are subject to Trio’s standard terms and conditions of sale.

The material in this manual is subject to change without notice. Despite every effort, in a document of this scope
errors and omissions may occur. Therefore, Trio cannot be held responsible for any malfunctions or loss of data as

a result.

Copyright (C) 2000-2018 Trio Motion Technology Ltd. All Rights Reserved

UK | USA | CHINA | INDIA

www.triomotion.com

SAFETY WARNING

During the installation or use of a control system, users of Trio products must ensure there is no possibility of
injury to any person, or damage to machinery.

Control systems, especially during installation, can malfunction or behave unexpectedly.

Bearing this in mind, users must ensure that even in the event of a malfunction or unexpected behaviour the
safety of an operator or programmer is never compromised.

This document uses the following icons for your reference:

Information that relates
to safety issues and

critical software
information.

Information to highlight

key features or
methods.

Useful tips and

techniques.

Example programs.

 Contents

1 TPS Teach pendant ... 1

2 The device .. 1

2.1 Introduction .. 1

2.2 Technical specifications... 3

2.3 Safety components ... 4

2.3.1 E-Stop .. 5

2.3.2 Demand switch ... 5

2.3.3 Key switch ... 7

3 Declaration of conformity ... 9

4 TPS: Teach Programming System .. 10

4.1 Virtual Teach Pendant casing .. 10

4.2 Keypad .. 11

4.3 Home screen ... 14

4.4 Warning / error window ... 15

4.4.1 Status ... 15

4.4.2 Log .. 15

4.4.3 Drive .. 16

4.5 Speed ... 18

4.6 Jog modes ... 19

4.7 Status bar ... 19

4.8 Behaviour in different modes .. 20

4.9 User levels .. 20

4.10 Main menu .. 22

4.11 GTAs / GTAJs .. 25

4.12 Tools dimensions ... 28

4.13 Tools collision... 33

4.14 Object Frames .. 34

4.15 Robot Frames ... 37

4.16 Collision objects ... 39

4.17 Applications: Palletizer ... 41

5 Projects and programs ... 45

5.1 Project manager ... 45

5.2 Program editor ... 46

5.3 Multi-line selection ... 47

5.4 Default move values ... 47

5.5 Program types and projects .. 48

5.6 Instructions set ... 50

5.6.1 Teach ... 50

5.6.2 Move .. 50

5.6.3 Robot ... 52

5.6.4 Gosub ... 52

5.6.5 Label.. 52

5.6.6 Stop ... 53

5.6.7 Empty line ... 53

5.6.8 Set .. 54

5.6.9 Wait... 56

5.6.10 Structures .. 56

5.6.11 Robot Functions ... 58

5.6.12 APPS ... 60

6 Robot functions.. 61

6.1 Multi-line selection ... 62

6.2 Default move values ... 62

6.3 Library and function types... 63

6.4 Functions: create and insert .. 65

7 Program state manipulation .. 71

8 Settings .. 72

8.1 About.. 72

8.2 IO configuration .. 73

9 Error and warning codes .. 74

9.1 Axis status codes ... 74

9.2 Robot status codes.. 74

9.3 TPS system codes .. 75

9.4 RPS Architecture codes ... 76

TPS: Teach Programming System 1

1 TPS Teach pendant
The Teach Programming System allows programming the robot in a managed and safe environment,
using a real or virtual system.

The pendant is based around Trio’s UNIPLAY HMI and can be used as a “real” or “virtual” on-screen
pendant. The system includes extensive software and preconfigured motion control functions, which
permit the controlling of all standard types of robot with reduced development time.

2 The device

2.1 Introduction

A teach pendant is a device by which an operator can jog a robot and create programs in a friendly and
easy way. Thanks to its safety features and buttons it is completely secure to control a robot in a safe
environment.

Figure 2-1: Teach pendant device

TPS: Teach Programming System 2

A virtual teach pendant has been developed that, along with other Motion Perfect robot tools, provides
a virtual robot environment to design and debug robot solutions over PC.

Figure 2-2: Virtual pendant

TPS: Teach Programming System 3

2.2 Technical specifications

Figure 2-3: teach pendant device specs

TPS: Teach Programming System 4

RPS has to be configured depending on what inputs had been used to connect the junction box with the
controller.

Refer to section in IO config section of TPS, page 73 of this document, to set the inputs numbers into the
system.

2.3 Safety components

This section describes safety components and procedures to be used when the Teach Programming
System is operated.

Figure 2-4: Junction Box

X2

X1

TB1

TPS: Teach Programming System 5

However, it does not cover how to design for safety nor how to install safety related equipment.

In the case of using a Virtual Teach Pendant, the safety components wiring is done through a
software casing mechanism. For more details go to Virtual Teach Pendant casing section, page 10.

2.3.1 E-Stop

An emergency stop is a state that overrides any other robot control, disconnects drive power from the
robot’s motors, stops all moving parts and disconnects power from any potentially dangerous functions
controlled by the robot system.

An emergency stop state means that all power is disconnected from the robot except for the manual
brake release circuits. The E-Stop button can be configured in IO config section of TPS, page 73 of this
document.

The E-Stop button can be found in the upper right corner of both real and virtual teach pendant and it
has the following outlook:

It must be performed a recovery procedure in order to return to normal operation.

The recovery procedure is triggered through the input “Error Reset” that can be configured in IO config
section of TPS, page 73 of this document.

2.3.2 Demand switch

Demand switch component is an enabling device, manually operated constant pressure three position
push-button. The Teach Pendant is equipped with two demand switches, positioned at the left and right
back side of the device, allowing for a left and right-handed operation.

 The safety components must be wired accordingly with safety standards that regulates
automation and it has to be conducted by a qualified person.

Figure 2-5: E-Stop real Teach Pendant Figure 2-6: E-Stop virtual Teach Pendant

TPS: Teach Programming System 6

The demand switch can be found at the back of the real Teach Pendant and at the front left side of the
virtual one with the following outlook:

The demand switches can be in the following three positions:

Position Function Demand switch Contacts

1 Home position Is not pressed Enabling output are open

2 Enabling Is pressed Enabling output are close

3 Panic Is pressed strong Enabling output are open

The Teach Pendant should be hold by the operator in a comfortable position, where demand switch can
be pressed with one hand while programming or operating the keypad with the other hand.

A recommended way of holding it could be as the following picture:

Figure 2-7: Demand switch real Teach Pendant Figure 2-8: Demand switch virtual Teach Pendant

TPS: Teach Programming System 7

This component will enable the device only in manual mode. In auto mode Demand switch component
is disabled and MOT button should be pressed to enable the system.

2.3.3 Key switch

There are three different modes where the system can be:

• Manual: to operate the system, demand switch has to be enabled. The maximum speed will be
set as WORLD_POS_REDUCED_SPEED and WORLD_ORI_REDUCED_SPEED, set by the system
integrator.

• Auto: in this case demand switch will be disabled and MOT button should be pressed to
enabled the system.

• Disable: Teach Pendant cannot be operated.

Three contacts key switch gives the possibility of changing between those three different modes secured
with its physical key.

The Key switch can be found in the upper left corner of both real and virtual teach pendant and it has
the following outlook:

 When demand switch is in enabling function, the system is in active status and the motors are
powered, allowing for movement through different functions but not initiating them. In any
other position, the motors will not be powered and the system will be safely stopped.

Figure 2-9: Demand switch pressed

TPS: Teach Programming System 8

All these safety components have an icon status representation in TPS. Once wired and configured in
TPS (shown in section 7.2 IO Configuration) the icons will show the status of the buttons as follows:

Manual, Auto, Disabled mode

Estop released, Estop pressed

Drive enabled, Drive disabled

Demand button released; Demand button pressed

Figure 2-10: Key switch real Teach Pendant Figure 2-11: Key switch virtual Teach Pendant

TPS: Teach Programming System 9

3 Declaration of conformity
This declaration of conformity is issued under the sole responsibility of the manufacturer.

We declare that the following product is in conformity with the essential requirements of the following
European Council Directives.

The object of the declaration described above is in conformity with the relevant European Union
harmonisation legislation in accordance with BS EN 50581:2012 and BS EN 17050-1:2010.

• Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the
restriction of the use of certain hazardous substances in electrical and electronic equipment

• Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the
harmonisation of the laws of the Member States relating to electromagnetic compatibility.

• EN55032:2015/AC: 2016 - Electromagnetic compatibility of multimedia equipment. Emission
Requirements.

• EN55024:2010 - Information technology equipment. Immunity characteristics. Limits and
methods of measurement.

• IEC 61000-4-2, 2nd Edition, Dec 2008 - Electromagnetic compatibility (EMC) - Part 4-2: Testing and
measurement techniques - Electrostatic discharge immunity test.

• IEC 61000-4-3, 3.2 Edition, Console with AMD 2, April 2010 - Electromagnetic compatibility (EMC)
- Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic
field immunity test.

• IEC 61000-4-4, 3rd Edition, Apr 2012 - Electromagnetic compatibility (EMC) - Part 4-4: Testing and
measurement techniques - Electrical fast transient/burst immunity test.

• IEC 61000-4-5, 3rd Edition, May 2014 - Electromagnetic compatibility (EMC) - Part 4-5: Testing
and measurement techniques - Surge immunity test.

• IEC 61000-4-6, 4th Edition, Oct 2013 - Electromagnetic compatibility (EMC) - Part 4-6: Testing and
measurement techniques - Immunity to conducted disturbances, induced by radio-frequency
fields.

• IEC 61000-4-8, 2nd Edition, Sept 2009 - Electromagnetic compatibility (EMC) - Part 4-8: Testing
and measurement techniques - Power frequency magnetic field immunity test.

The notified body: Compliance Certification Services Inc. Kunshan Laboratory, Kunshan City, Jiangsu,
China, duly issued the CE EMC Test certificate.

Report Number: C180913E14-ET

Dated: 27th September 2018

TPS: Teach Programming System 10

4 TPS: Teach Programming System

4.1 Virtual Teach Pendant casing

Virtual Teach Pendant with compact casing and key switch, E-Stop and demand buttons can simulate the
same behaviour as real Teach Pendant. Key switch, E-Stop and demand buttons can be configured with
a virtual or real output. In the case of real controller, those outputs should be wired to the inputs selected
for the real buttons, so the actions will be triggered either with real or virtual Teach Pendant. In the case
of Simulator controller, virtual inputs and outputs are assigned to the same numbers, triggering the
correct actions using inputs or outputs.

The output configuration in virtual Teach Pendant can be found in the left top menu under “Tools ->
Options”. Then, under “Casing” tab, “Compact casing for HTS-A013-1C6 with key, emergency and
demand button” casing option can be selected. “Enable I/O mappings” has to be selected as well, along
with the desired output numbers.

The TPS needs to know what inputs have been configured for the safety components, for both cases real
or virtual ones. For more details in how to do this configuration please, refer to IO config section, page
73 of this document.

Figure 4-1: virtual pendant output mappings

TPS: Teach Programming System 11

4.2 Keypad

User interface Enter the home page of user defined interface

Settings Enter the settings interface page

Program list Prompt the list of programs in the current project

Program editor Enter the program editor page

Positions Prompt axis position window

Messages / Log Prompt the messages and log interface

Figure 4-2: menu keypad

TPS: Teach Programming System 12

Motor enable Servo ON and OFF (Auto mode only)

Robot selection Select different robot

Coordinate system

selection
Change the jog coordinate system

Operation mode Change the program running mode between step and continuous mode

Jog speed minus Decrease the global jog speed

Jog speed plus Increase the global jog speed

Figure 4-3: function keypad

TPS: Teach Programming System 13

Stop program

Stop program, robot execution and clear move buffers. Refer to section Program

state manipulation for more information about stop program.

Execute program
Start program execution. Refer to section Program state manipulation for more

information about the different execution modes.

Jog axis negative Under servo ON condition, jog axis backward

Jog axis positive Under servo ON condition, jog axis forward

Figure 4-4: axis keypad

TPS: Teach Programming System 14

4.3 Home screen

System status windows will show warnings and errors that happens in every robot axis. It will show the
axis number, error code and the message itself.

Figure 4-5: Home page

TPS: Teach Programming System 15

4.4 Warning / error window

If an error or warning exists, system log and status button will change its colour to yellow warning.

4.4.1 Status

The status is divided in System and Joints. General System errors or warnings will be shown under System
tab. Individual Joint errors or warnings will be shown under each Joint tab.

Errors can try to be cleared by pressing refresh button.

4.4.2 Log

The log window will show and store warning and error messages. Up to 2048 messages will be stored in
flash memory. The messages will be compound by date and time of message generation, number of
seconds the controller is active and the message itself.

The whole group of messages can be cleared by clicking trash button.

A special log entry is stored every time the controller is powered up, such as:

600:00014@1ms [0.05 2.0296000 $0000 $0c000003]

 Please, refer to Error and warning codes section for a full list.

Figure 4-6: System status window

TPS: Teach Programming System 16

600 = Controller type

00014 = Controller serial number

@1ms = Servo period cycle time

0.05 = Bootloader version

2.0296000 = Firmware version

$0000 = FPGA number

$0c000003 = Feature Enabled Codes

4.4.3 Drive

Users can develop their own logic to catch Drive errors and send messages to the teach pendant under
Drive tab.

To show a user drive error on teach pendant, VR(DriveError) has to be = 1.

To reset it to its normal status, VR(DriveError) has to be = 0.

To trigger the events, VR(DriveMessageTrigger) has to be incremented.

The messages have to be stored in VRs and have been divided by axis: VR(DriveMessageAxis1),
VR(DriveMessageAxis2), VR(DriveMessageAxis3), VR(DriveMessageAxis4), VR(DriveMessageAxis5) and
VR(DriveMessageAxis6).

Figure 4-7: System log window

TPS: Teach Programming System 17

To clear the messages from the Drive window, the refresh button has to be pressed. This action will
turn the flag VR(DriveErrorReset) = 1. The user will have to handle in his logic the drive error reset
procedure and clear all VRs error messages. The window will be clear automatically after press refresh
button, so VR(DriveMessageTrigger) should be triggered if some errors persist after the reset procedure.

Example:

INCLUDE "RPS_A_INITIALISE_VARIABLES"

'Trigger error flag, so it will highlight status icon on pendant

VR(driveerror) = 1

'Set error messages:

VR(drivemessageaxis1) = "Error in drive 1"

VR(drivemessageaxis3) = "Error in drive 3"

'Trigger drive errors:

VR(drivemessagetrigger) = VR(drivemessagetrigger) + 1

'Reset errors:

'press refresh button -> VR(DriveErrorReset) = 1

IF VR(driveerrorreset) = 1 THEN

 VR(driveerrorreset) = 0

 'Reset logic:

 'error drive 1 persist

 VR(drivemessageaxis1) = "Error in drive 1 persist"

 'error drive 3 cleared

 VR(drivemessageaxis3) = 0

 'Trigger drive errors

 VR(drivemessagetrigger) = VR(drivemessagetrigger) + 1

ENDIF

TPS: Teach Programming System 18

4.5 Speed

Jog speed can be set in percentages by Speed window.

Figure 4-9: Speed window

Figure 4-8: Drive error window

TPS: Teach Programming System 19

4.6 Jog modes

There are five different jog modes selectable sequentially by pressing Jog mode button. The button will
change its icon accordingly with selected mode.

Joint

Each axis moves independently. The robot arm moves

around joint under demand range. The position of end-

effector is determined by joint orientation and position.

 World

The end-effector moves straight along the world coordinate

system. The orientation uses extrinsic rotations. All the

position of end-effector is defined by world coordinate. It is

possible that singularity point will occur when using world

coordinate.

Base

The end-effector moves straight along the base coordinate

system. The orientation uses extrinsic rotations. The origin

point of the system is on the robot base.

Tool

The end-effector moves straight along the tool coordinate
system. The orientation uses intrinsic rotation. The origin
point of the system is on the tool like gripper.

Object Frame
The end-effector moves straight along the active object

frame. The orientation uses extrinsic rotations.

4.7 Status bar

Status bar will show the robot, tool, object frame and robot frame selected. All of them are selectable in
their specific pages.

It is also shown the status of pendant (manual, auto, disabled), Estop, Servo and Demand buttons.

Manual, Auto, Disabled mode

Estop released, Estop pressed

Drive enabled, Drive disabled

Figure 4-10: status bar

TPS: Teach Programming System 20

Demand button released; Demand button pressed

Step mode

Continuous mode

4.8 Behaviour in different modes

The behaviour of the robot will change depending on what mode it is being operated in. The behaviour
is listed below.

Manual Mode: In this mode, Jogging is allowed. The speed of the robot will be limited to
WORLD_POS_REDUCED_SPEED and WORLD_ORI_REDUCED_SPEED and the global override will be
applied to the reduced speeds. The robot will be enabled only using the demand button. The button
needs to be held pressed.

Auto Mode: In this mode, Jogging is prohibited. The speed of the robot will only be limited be the set
maximum speed and the global override will be applied to the program speed. The robot will be
enabled by closing the safety door (if that option is enabled) and pressing the MOT button.

Disabled Mode: In this mode, jogging and running programs is prohibited. The robot will not enable in
this mode.

4.9 User levels

The system will enable or disable different features depending on the selected user level. There are four
user levels as described below:

Level 1: Highest level with all authority in the system, all the functions and features are available. It has
been designed mainly for developers.

Level 2: Manufacturing level. For now, level 2 and level 1 share almost the same authority in the system.

Level 3: Customer engineering level. In this level users will not be allowed to configure system
information or change system configuration.

Level 4: This level is designed for operators who work around the robot. Only run edited programs and
start/stop/shut down the system or programs functions are available.

TPS: Teach Programming System 21

Feature Level 1 Level 2 Level 3 Level 4

Status and log Y Y Y Y

Jog Speed Y Y Y N

Jog Modes Y Y Y N

GTAs Y Y Y N

Tools Dimensions Y Y Y N

Tools Collision Y Y Y N

Object Frames Y Y Y N

Robot Frames Y Y Y N

Collision Objects Y Y Y N

Project Manager Y Y Y Y

Program Editor(Debug Buttons) Y Y Y Y

Program Editor(Program edition Buttons) Y Y Y N

Program Types and Projects Y Y Y Y

Instructions Set Y Y Y N

Settings Y Y N N

IOs settings Y Y N N

User level status. It is a button that shows the current user level and shows the user level window when
pressed.

The levels can be set through user level window. Higher level can set a lower level without password. To
set a higher level than the current one the correct password must be set.

To change the password of a level, the button must be pressed.

It is only possible to change the password of a level from its level or higher.

Default passwords are as follows:

Figure 4-11: user level status button

Figure 4-12: user level window

TPS: Teach Programming System 22

- Level 1: level1
- Level 2: level2
- Level 3: level3
- Level 4: level4

Characters allowed are the ASCII table.

To reset all passwords to default values, COORDINATOR_DATA(68) instruction has to be executed over
the terminal through Motion Perfect.

4.10 Main menu

Main menu button will drop the main menu:

Projects manager and

program editor

GTA page

Tools and Frames menu

Applications menu

Inputs / outputs page

Setting page

Figure 4-13: change level password window

TPS: Teach Programming System 23

Projects:

Applications:

Tools, frames and collision objects:

Object Frames page

Robot Frames page

Tools menu

Collision Objects page

Project manager window

Program editor page

Function editor page

Palletizer page

TPS: Teach Programming System 24

Tools dimensions and collision:

Tools dimension page

Tools collision page

TPS: Teach Programming System 25

4.11 GTAs / GTAJs

GTA is the Global Targets Array which contains an array of globally available TARGET points.

It stores information of position and orientation in 3D space in the case of GTA and joint positions in
degrees for GTAJ. The TARGET data type represents a set of 6 values:

GTA (white back ground):

- X, Y, Z – for the coordinates of the point in 3D space in millimetres

- U, V, W – for the angular orientation in degrees

GTAJ (orange back ground):

- X, Y, Z, U, V, W – Up to six angular joint positions

An array of 1000 GTAs is available for use in all programs. In addition to the 6 coordinates GTAs can have
name assigned which can be used to reference them in programs.

Save

On this screen you can see the range of GTAs that are in controller flash memory at the moment of entry
in this page. All the changes will be done in flash memory, so GTAs will never be lost even if controller
firmware is updated.

Figure 4-14: GTA page

TPS: Teach Programming System 26

It is possible to save the whole table in the robot basic file “ROBOT_GLOBAL_TARGETS” (the program
will be overwritten with the new values). If a GTA is set by another program while GTA page is active, it
will be refreshed automatically.

Move to GTA

Move to GTA button will move the robot to the selected GTA with the active tool and frames, at the
selected speed and mode. It will only be active in manual mode.

Teach Cartesian

Teach cartesian button will store the current cartesian position in the selected GTA with a given name.
The position can be changed by jogging the robot with jog buttons of the Teach Pendant.

Teach Cartesian

Teach joints button will store the current joints position in the selected GTAJ with a given name. The
position can be changed by jogging the robot with jog buttons of the Teach Pendant.

Shift up

Shift down

Shift up and down buttons will effectively shift a selected GTA on position in the list. This will change the
index of the GTA.

Edit

Edit button will prompt an editor by which the operator can directly type-in a new GTA or modify the
coordinates or the name of a previously defined entry.

Delete

It is possible to delete a GTA (or a range of GTAs by having Multi select check box checked) by clicking in
delete button. That entry will become empty in controller flash memory and GTAs screen but controller
program will still be having the entry until save button is pressed. This process will not delete entries
declared out of “ROBOT_GLOBAL_TARGETS” robot basic file.

TPS: Teach Programming System 27

Zero entries check box will collapse or expand the empty entries for a more compact representation.

Figure 4-15: Edit GTAs window

TPS: Teach Programming System 28

4.12 Tools dimensions

The tool offset is a transformation between the end-effector and the Tool Centre Point. It sets a distance
and orientation of a tool from the end effector to the TCP.

Similar to the target points it is presented as a set of 6 values:

- X, Y, Z – for the coordinates of the offset in millimetres

- U, V, W – for the angular orientation of the tip in degrees.

An array of 31 tool definitions is available for use to all programs. Unique name can be assigned to each
tool to be used to identify and reference it in programs.

Save

On this screen you can see the range of Tools that are in controller flash memory at the moment of entry
in this page. All the changes will be done in flash memory, so Tools will never be lost even if controller
firmware is updated.

It is possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If a Tool is set by another program while Tools page is active,
it will be refreshed automatically.

Select

Figure 4-16: Tools page

TPS: Teach Programming System 29

It is possible to activate the selected Tool by clicking Select button. The selected tool will be highlighted
in green colour. Tool offset 0 is active by default.

Edit

Edit button will prompt an editor by which the operator can directly type-in a new Tool dimension or
modify the coordinates or the name of a previously defined entry.

Delete

It is possible to delete a Tool (or a range of Tools by having Multi select check box checked) by clicking in
delete button. That entry will become empty in controller flash memory and Tools screen but controller
program will still be having the entry until save button is pressed. This process will not delete entries
declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

Calibrate

Calibrate button will lead to Calibrate page. In this page it will be possible to calculate the dimensions of
a tool performing a calibration procedure.

Figure 4-17: Tool calibration page

TPS: Teach Programming System 30

Calibrate

Accept

Cancel

During the calibration procedure the robot must be moved to different positions and orientations trying
to keep the tip of the tool as close as possible to a pre-selected point in 3D space. Usually a calibration
object is fixed in a stable position relative the robot so that it can be used as a reference point.

The operator should jog the robot position and orientation until the tip goes as close as possible to the
reference object.

By pressing one of the grey tools images the values will be saved for that position and it will become
green, showing that position has been stored.

Figure 3-18: Tool calibration save position window

TPS: Teach Programming System 31

Then the operator can continue by capturing the next point.

Once four points are captured the system will enable calibration button and, after this button had been
pressed, calibration algorithm will attempt to calculate the tool offset based on the input points that are
collected.

A deviation value (Serror) is displayed as well. It can be used as an indication for the quality of the point
and the operator can decide to recapture some of the points in order to improve the calibration.

Figure 3-19: Tool calibration one position saved

TPS: Teach Programming System 32

By pressing accept button the tool data will be stored to the controller and the new values will appear
in Tools page.

Figure 4-20: Tool calibration process done

Figure 4-21: Tools calibration process done

TPS: Teach Programming System 33

4.13 Tools collision

The tool collision is an Oriented Bounding Box around the physical tool. It sets the centre position of the
OBB and the dimensions needed for the collision algorithm.

It is presented as a set of 6 values:

- CX, CY, CZ – centre position of the OBB on the object in millimetres
- DX, DY, DZ – half distances measured in every vector of the OBB in millimetres.

Tools collision is information stored in tool data, which means rules of tools offset apply here. An array
of 31 definitions is available for use to all programs. A unique name can be assigned to each tool to be
used to identify and reference it in programs.

 For more information please, refer to RPS manual.

Figure 4-22: Tool Collision page

TPS: Teach Programming System 34

4.14 Object Frames

The object frame is a transformation between the global coordinate system and the coordinate system
of an object that is manipulated by the robot. By using object frames it is possible for target points to be
defined with respect in the coordinate system of the object. Like the target points it is presented as a set
of 6 values:

- X, Y, Z – for the coordinates of the offset in millimetres
- U, V, W – for the angular orientation offset in degrees.

An array of 31 object frame definitions is available for use to all programs. A unique name can be
assigned to each object frame to be used to identify and reference it in programs.

Save

On this screen you can see the range of Object Frames that are in controller flash memory at the moment
of entry in this page. All the changes will be done in flash memory, so Object Frames will never be lost
even if controller firmware is updated.

It is possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If an Object Frame is set by another program while Object
Frames page is active, it will be refreshed automatically.

Figure 4-23: Object Frames page

TPS: Teach Programming System 35

Select

It is possible to activate the selected Object Fame by clicking Select button. The selected object frame
will be highlighted in green colour. Object frame 0 is active by default.

Edit

Edit button will prompt an editor by which the operator can directly type-in a new Object Frames or
modify the coordinates or the name of a previously defined entry.

Delete

It is possible to delete an Object Frame (or a range of Object Frames by having Multi select check box
checked) by clicking in delete button. That entry will become empty in controller flash memory and
Object Frames screen but controller program will still be having the entry until save button is pressed.
This process will not delete entries declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

Teach

Teach button will prompt the constructor window. In Object Frame constructor window, it will be able
to build an Object Frame by teaching three points as follows:

- First point should be at the base or the origin of the object coordinate system.
- Second point should on the X axis of the object coordinate system.
- Third point should on the Y axis of the object coordinate system.

Figure 4-24: construct Object Frame window

TPS: Teach Programming System 36

Points are captures using Teach Pendant jog buttons.

The operator should adjust the robot position and orientation until the tip goes as close as possible to
the desired target point.

The corresponding button changes its state if the captured point is correct.

When three points are captured, the Object Frame is ready to be stored and the operator can select a
unique name for it so that it can be referenced in programs.

Edit button will prompt an editor by which the operator can directly type-in a new Object Frame or
modify the coordinates or the name of a previously defined entry.

Zero entries check box will collapse or expand the empty entries for a more compact representation.

Figure 4-25: Edit Object Frames window

TPS: Teach Programming System 37

4.15 Robot Frames

The robot frame is a transformation between the global coordinate system and the coordinate system
of the robot. By using Robot Frames, it is possible for multiple robots to be positioned about a common
global coordinate system. Like the target points robot frames are presented as a set of 6 values:

- X, Y, Z – for the coordinates of the offset in millimetres
- U, V, W – for the angular orientation offset in degrees.

An array of 31 robot frame definitions is available for use to all programs. Unique name can be assigned
to each robot frame to be used to identify and reference it in programs.

Save

On this screen you can see the range of Robot Frames that are in controller flash memory at the moment
of entry in this page. All the changes will be done in flash memory, so Robot Frames will never be lost
even if controller firmware is updated.

It is possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If a Robot Frame is set by another program while Robot Frames
page is active, it will be refreshed automatically.

Figure 4-26: Robot Frames page

TPS: Teach Programming System 38

Select

It is possible to activate the selected Robot Fame by clicking Select button. The selected Robot frame will
be highlighted in green colour. Robot frame 0 is active by default.

Edit

Edit button will prompt an editor by which the operator can directly type-in a new Robot Frame or modify
the coordinates or the name of a previously defined entry.

Delete

It is possible to delete a Robot Frame (or a range of Robot Frames by having Multi select check box
checked) by clicking in delete button. That entry will become empty in controller flash memory and
Robot Frames screen but controller program will still be having the entry until save button is pressed.
This process will not delete entries declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

Zero entries check box will collapse or expand the empty entries for a more compact representation.

Figure 4-27: Edit Robot Frames window

TPS: Teach Programming System 39

4.16 Collision objects

Collision objects are an Oriented Bounding Boxes around the physical objects present in the scenario. It
sets the centre position and orientation of the OBB and the dimensions needed for the collision
algorithm.

It is presented as a set of 9 values:

- X, Y, Z – centre position of the OBB on the object in millimetres
- U, V, W – centre orientation of the OBB on the object in degrees
- DX, DY, DZ – half distances measured in every vector of the OBB in millimetres.

An array of 32 definitions is available for use to all programs. A unique name can be assigned to each
object to be used to identify.

Save

On this screen you can see the range of Collision Objects that are in controller flash memory at the
moment of entry in this page. All the changes will be done in flash memory, so Collision Objects will
never be lost even if controller firmware is updated.

It is possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If a Collision Objects is set by another program while Collision
Objects page is active, it will be refreshed automatically.

Figure 4-28: Collision Objects.

TPS: Teach Programming System 40

Select

It is possible to activate the selected Collision Objects by clicking Select button. The selected Collision
Objects will be highlighted in green colour.

Although is possible to define 32 Collision Objects, just 10 can be active at the same time.

Each object is activated per robot defined. It means an object can be active for a robot and not for other
existing one in the system.

Edit

Edit button will prompt an editor by which the operator can directly type-in a new Collision Objects or
modify the coordinates or the name of a previously defined entry.

Delete

It is possible to delete a Collision Object (or a range of Collision Objects by having Multi select check box
checked) by clicking in delete button. That entry will become empty in controller flash memory and
Collision Objects screen but controller program will still be having the entry until save button is pressed.
This process will not delete entries declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

Figure 4-29: Edit Collision Object window.

TPS: Teach Programming System 41

4.17 Applications: Palletizer

This function can create a palletizer. It separates the building process into several steps.

The first step builds a plane with size of three dimensions.

The second step is to design item size and position. The dimension of item and position of tool target.

Figure 4-30: pallet configuration window.

TPS: Teach Programming System 42

The third step is to design number items of each layer.

Figure 4-31: item configuration window

Figure 4-32: layer configuration step1 window

TPS: Teach Programming System 43

The objects on each layer can be organised by clicking Edit in Layer configuration page.

Figure 4-33: item organiser window

TPS: Teach Programming System 44

The next step can put items on a virtual tray.

The Generate Points button can define the start number from GTAs list.

There is another application related to this palletizer application in pendant edit program list.

Figure 4-34: layer configuration step2 window

TPS: Teach Programming System 45

5 Projects and programs

5.1 Project manager

Projects and programs can be handled through project manager window.

In this manager it is possible to save programs and projects into an USB stick connected to the teach
pendant if the controller button is selected.

If USB stick button is selected, its content is shown, and programs and projects can be loaded or deleted.

 Only one project with multiples programs can be stored in controller memory. For multiples projects
use an USB stick. Projects must be in root directory organised in folders.

Figure 5-1: project manager window

TPS: Teach Programming System 46

5.2 Program editor

In program editor page is where a program can be edited, and it provides debugging facilities for robot
programs.

Debug buttons:

Set program pointer

Set the program pointer over the selected line. If the

program is stop then it will start it, pausing it over the

selected line (previous instructions will not be

executed).

Break point Toggle breakpoint on selected line.

Refer to section Program state manipulation for more information about how to start / stop
programs.

Figure 5-2: Program editor page

TPS: Teach Programming System 47

Program edition buttons:

Program list
Prompt the list of robot programs and the actions that

can be done to them.

Indent
It will auto-format the program for a more readable
form.

Comment
Comment and uncomment selected lines, group of lines
or insert comment in line.

Insert above
Shows the instruction list to be inserted above the

selected line.

Insert below
Shows the instruction list to be inserted below the

selected line.

Edit
It will prompt the corresponding window depending on
the selected instruction to edit.

Copy / Cut / Paste
The selected line or multiple lines can be copied, cut or

pasted using this menu button.

Delete Delete the selected line or multiple lines.

5.3 Multi-line selection

On the right lower corner there is a Multi select check box that allows up to 20 lines be selected at the
same time. It is possible to copy, cut, paste, delete and comment the selected group of lines at the same
time.

5.4 Default move values

Default move values can be accessible by the left lower corner link where, in this case, says MOVEJ S:=50
T:=TO_default O:=OF_default Z:=0. These values will be used by teach instruction explained below.

TPS: Teach Programming System 48

5.5 Program types and projects

The program list button will prompt the program list window and what can be done to them. It
shows in a list all robot programs available in controller flash memory.

Figure 5-3: default move window

Figure 5-4: program list window

TPS: Teach Programming System 49

There are two different robot programs: Robot Programs (.ROB file extension) and Robot Basic Programs
(.RBS file extension).

Both have the same functionality, but robot programs can only contain the list of functions available
from pendant. Also, TPS can only edit robot programs. Robot basic programs can only be run and
debugged.

To select what type of robot program will be shown in the program list just simply press the buttons:

It is possible to edit, duplicate, rename or delete a robot program or robot basic program selecting it on
the list and pressing the corresponding button.

To create a new robot program simply press New button and assign a unique name.

Robot basic program can only be seen if the system is in the correct level.

The picture below shows a blank new program called “PICK_AND_PLACE”:

To change the name of the project just simply press over the current project name,
“RobotPendantProject” in this case, and a keypad will be prompt.

Figure 5-5: Program list window

Figure 5-6: program PICK_AND_PLACE recently created

Figure 5-4: robot program type

TPS: Teach Programming System 50

5.6 Instructions set

A certain group of instructions can be inserted above or below of the selected line by clicking insert
above and insert below buttons.

5.6.1 Teach

It is possible to speed up the process of inserting several moves of the same type and the same
parameters. In this case the GTA coordinates are captured from the current robot position instead of
from the GTA table. The coordinates are saved automatically in the next empty GTA starting from the
selected index in default move values window.

5.6.2 Move

Up to three move instructions can be inserted with move instruction window.

MOVEJ is used to move the robot from one point to another along a non-linear path. All axes reach the
destination position at the same time. It is the quickest type of movement due to the axes move the
exact amount of degrees needed to reach the desired position.

MOVEL is used to move the robot from one point to another along a linear path. All axes reach the
destination position at the same time.

MOVEC is used to move the robot from one point to another along a circular path. All axes reach the
destination position at the same time. This type of move needs a middle point in the curve and the end
point.

Figure 5-7: Instruction list menu

TPS: Teach Programming System 51

MOVEJREL is used to move the robot from one point to another, relative to the starting position, along
a non-linear path. All axes reach the destination position at the same time. It is the quickest type of
movement due to the axes move the exact amount of degrees needed to reach the desired position.

The speed of the move is an interpolated speed and NOT the speed of any individual axis or the end
effector.

A single joint can be moved by simply set all values of the target as 0 except the desired joint to move.

MOVELREL is used to move the robot from one point to another, relative to the starting position, along
a linear path. The end effector moves along the straight line between current point and target point in
cartesian space. All axes reach the destination position at the same time.

A single vector can be moved by simply set all values of the target as 0 except the desired vector to move.

It is possible to modify the behaviour of the movement according to some embedded parameters. These
parameters only affect the belonging move instruction. If a move instruction has no parameter or just a
few it will use the default values for any missing parameter. The available parameters are:

- S: Speed in degrees per second for joint moves and millimetres per second for linear and circular
moves.

- A: Acceleration

- D: Decerelation

- T: Tool offset.

- O: Object Frame.

- C: Configuration (just for joint moves).

Figure 5-8: MOVE instruction window

TPS: Teach Programming System 52

- Z: Precision (for linear and joint moves).

Use the current robot position storing the data into a GTA is possible through Teach button. If a GTA is
selected, the system will reteach it with the new axis values, otherwise the system will store the values
in a no active GTA, starting from the selected default index (4.4 Default move values).

After applying the changes, the system will store the data in both, controller volatile memory and in
ROBOT_GLOBAL_TARGETS file.

On the other hand, if cancel button is pressed, all the changes will be discarded.

5.6.3 Robot

The ROBOT command is used to direct all subsequent motion instructions and robot parameter
read/writes to a particular robot.

To select external axes BASE command has to be used.

5.6.4 Gosub

Stores the position of the line after the GOSUB command and then branches to the label specified.
Upon reaching the RETURN statement, control is returned to the stored line.

GOSUB structure can be nested up to 8 deeps in each program.

5.6.5 Label

Labels are used as destinations for GOSUB commands and also to aid readability of code.

 If a GTA is already selected, Teach button will overwrite its value with the current robot position.

Figure 5-10: GOSUB instruction

Figure 5-9: ROBOT instruction

TPS: Teach Programming System 53

 With a label RETURN instruction is inserted automatically as well. RETURN instruction can be inserted
as its own by selecting RETURN radio button on LABEL window.

5.6.6 Stop

STOP instruction will stop the program execution at its current line.

5.6.7 Empty line

It will introduce an empty line to aid readability of code.

 It is recommended to insert STOP instruction above any LABEL-RETURN structure to avoid execution
errors.

Figure 5-11: Label instruction

Figure 5-12: Stop instruction

TPS: Teach Programming System 54

5.6.8 Set

Sets either digital or analog outputs to a given value, assign values to a VR or an already declared
variable or declare a variable.

Analog output has to set as 12 bits (+/- 10v)

VR is an array of real numbers stored in flash memory. The size of the array depends of controller
model.

The type of possible variables that can be declare are the next ones:

- Boolean: 1bit binary value (TRUE or FALSE).
- Float: 64bit floating point number.
- Integer: 64bit signed integer value.
- String: ASCII text (1024 characters maximum).

String data type require size as an extra parameter.

Multiple variables can be declared in one instruction separated by commas.

If an invalid symbol is inserted or entry ends with a comma the window will show a message and Apply
button will be disabled.

 Only pre-configured Digital Outputs will be shown on the Digital Outputs combo box.

Figure 5-13: Set window

Figure 5-14: multiple variable declaration

TPS: Teach Programming System 55

Assign values or variables value to a variable is also possible in set window. The variable list will be
accessible when Set Var is selected or through the button Var in set variable value window when
setting variable or VR value. If the selected variable is STRING datatype it will display a QWERTY
keyboard window at the moment of setting its value.

The return value of the a robot function can be assigned to a variable of the same return datatype
through ‘Func’ button.

This will prompt a list of avaliable functions for the slected variable datatype.

Figure 5-16: Variable list window

Figure 5-15: Set variable value window

Figure 5-17: Function list window

TPS: Teach Programming System 56

5.6.9 Wait

Three types of wait are possible to set:

- Wait IDLE: wait until all motion in buffer of selected robot or axis is finished.
It is possible to add time in Wait IDLE, so the robot will hold for the number of milliseconds
specified after all motion in buffer is finished.

- Wait: WA() will hold up program execution for the number of milliseconds specified.
- Wait until: wait for selected input is ON or OFF.

5.6.10 Structures

Structures instructions are compound by WHILE…WEND, REPEAT…UNTIL, IF…ELSE and FOR…NEXT.

The commands contained in the WHILE…WEND loop are continuously executed until the condition
becomes false. Execution then continues after the WEND. If the condition is false when the WHILE is first
executed, then the loop will be skipped.

The REPEAT…UNTIL structure allows a block of instructions to be continuously repeated until an
expression becomes TRUE. REPEAT…UNTIL loops can be nested without limit.

Figure 5-18: Wait window

Figure 5-19: Structures submenu

Figure 5-20: While...Wend structure window

TPS: Teach Programming System 57

An IF program structure is used to execute a block of code after a valid expression. The structure will
execute only one block of instructions depending on the conditions. If multiple expressions are valid then
the first will have its instructions executed. If no expressions are valid and an ELSE is present the
instructions under the ELSE will be executed.

WHILE…WEND, REPEAT…UNTIL, IF…ELSE structure instructions can be set by bool condition builder
window. It is a wizard that helps users set the condition for structure instructions. The conditions are
built in the following format:

variable - relational operator – variable

logical operator

variable - relational operator - variable

…

Figure 5-21: Repeat...Until structure window

Figure 5-22: If...Elseif...Else structure window

Figure 5-23: logical operators

TPS: Teach Programming System 58

A FOR…NEXT structure is used to execute a block of code a number of times.

On entering this structure, the variable (previously declared) is initialised to the value of start and the
block of instructions is then executed. Upon reaching the NEXT command, the variable defined is
incremented. If the value of the variable is less than or equal to the end parameter, then the block of
instructions is repeatedly executed. Once the variable is greater than the end value the program drops
out of the FOR...NEXT.

FOR...NEXT loops can be nested up to 8 deeps in each program.

5.6.11 Robot Functions

Already defined Robot functions can be called in robot programs to do specific tasks or to have a cleaner
code.

Figure 5-27: For...Next structure window

Figure 5-26: Condition builder window
Figure 5-25: Condition builder window

Figure 5-24: relational operators

TPS: Teach Programming System 59

This will prompt a list of avaliable functions for the slected variable datatype.

Assign the return value of a function to a variable is possible through ‘Set’ window (refer to section 5.6.8).

5.6.12 APPS

This application can design a conveyer system compare with former palletizer system. There are
several blocks to determine some parameters needed in the conveyer and palletizer system.

Figure 5-28: Function list window

Figure 5-29: Function menu

TPS: Teach Programming System 60

Description of each parameters:

• Item_up: The position pick item up

• Item_down: The position pick item down

• First GTA: First GTA in the system

• Last GTA: Last GTA in the system

• Tool Output: The output tool like gripper

• OF item: Offset point on the conveyer

• OF pallet: Offset point on the pallet

• Sensor input: Vision or light sensor input of system

• Middle: The middle point of tool.

Figure 5-30: pallet system

TPS: Teach Programming System 61

6 Robot functions
Users can define robot functions and call them in robot programs, giving a lot of programming
possibilities. Robot has to be defined in Robot Function Libraries. These ones can be Robot Functions or
Robot Basic Functions depending on user level.

Robot functions can be defined in functions editor which is accessible through Main menu -> Projects ->
Function editor.

The function editor aspect is very similar to program editor.

Figure 6-1: Function Editor access

Figure 6-2: Function Editor

TPS: Teach Programming System 62

Program edition buttons:

Compile
Forces compilation of the selected Robot Function

Library.

Function library list
Prompt the list of Robot Function Libraries and the

actions that can be done to them.

Indent
It will auto-format the program for a more readable
form.

Comment
Comment and uncomment selected lines, group of lines
or insert comment in line.

Insert above
Shows the instruction list to be inserted above the

selected line.

Insert below
Shows the instruction list to be inserted below the

selected line.

Edit
It will prompt the corresponding window depending on
the selected instruction to edit.

Copy / Cut / Paste
The selected line or multiple lines can be copied, cut or

pasted using this menu button.

Delete Delete the selected line or multiple lines.

6.1 Multi-line selection

On the right lower corner there is a Multi select check box that allows up to 20 lines be selected at the
same time. It is possible to copy, cut, paste, delete and comment the selected group of lines at the same
time.

6.2 Default move values

Default move values can be accessible by the left lower corner link where, in this case, says MOVEJ S:=50
T:=TO_default O:=OF_default Z:=0. These values will be used by teach instruction explained below.

TPS: Teach Programming System 63

6.3 Library and function types

The function library list button will prompt the library and function list window and what can be
done to them. It shows two list, all robot function libraries and function list associated to the selected
library, all of them available in controller flash memory.

Figure 6-3: default move window

Figure 6-4: program list window

TPS: Teach Programming System 64

There are two different robot libraries: Robot Libraries (.ROBLIB extension) and Robot Basic Libraries
(.RBSLIB file extension).

Both have the same functionality, but robot libraries can only contain the list of functions available from
pendant. Also, TPS can only edit robot libraries. Robot basic libraries functions and their functions can
only be called.

To select what type of robot library will be shown in the library list just simply press the buttons:

It is possible to edit, duplicate, rename or delete a robot library selecting it on the list and pressing the
corresponding button.

To create a new robot library simply press New button and assign a unique name.

Robot basic library can only be seen if the system is in the correct level.

The picture below shows a blank new library called “ROB_LIB”:

Figure 6-6: Program list window

Figure 6-7: library ROB_LIB recently created

Figure 6-5: robot library type

TPS: Teach Programming System 65

6.4 Functions: create and insert

Function editor is very similar to Program editor with the difference that it is possible to create and insert
functions (Program editor can only insert functions).

To create a function, click over ‘insert above’ or ‘insert below’ button , then ‘Functions’ and
then ‘Create’.

The Robot functions creator window will prompt.

Figure 6-8: functions menu

TPS: Teach Programming System 66

‘Function name’ is the only compulsory entry, ‘Parameters’ and ‘Return’ are optional.

To add parameters just simply click over increase / reduce parameters buttons .

Then, select the parameter, select the parameter data type through the combo box and click over
parameter name. A window will prompt to insert a name for it.

After click over ‘Accept’ button, the example function ‘mul_ab’ will be created as the following image
shows:

Figure 6-9: Robot functions creator

Function name

Parameters

Return data type

Parameter data type

Parameter name

Increase / reduce
parameters

Figure 6-10: mul_ab function recently created

TPS: Teach Programming System 67

Pay attention to ‘Compile’ button. In this case the library has not been compiled. Meaning that a
program will not be editable or run.

It is possible to declare variables and return their values in the function.

To do that, first insert a variable declaration inside the Function structure, accessible through ‘SET’
button in insert above / below menu :

Figure 6-11: insert variable ‘c’ declaration

TPS: Teach Programming System 68

Now we can set the new variable ‘c’ as the return value for our function by simply edit the ‘RETURN’
instruction using ‘edit’ button after select the line:

Figure 6-12: ‘c’ variable declared

Figure 6-13: return ‘c’ variable

TPS: Teach Programming System 69

After this, the library can be compiled by pressing ‘compile’ button . It will not return any value
due to ‘c’ variable has not being used but the function syntax is correct. ‘Compile’ button will change if
the library has been compiled successfully.

A simple operation can be done to finalise our ‘mul_ab’ function. Let’s multiply parameters ‘a’ and ‘b’
and assign it to ‘c’ variable. This can be done using ‘SET’ window as before.

Figure 6-14: set ‘c’ variable as ‘a’ * ‘b’

TPS: Teach Programming System 70

After indent our library and compile it, our ‘mul_ab’ is ready to be called from programs.

Figure 6-15: ‘c’ = ‘a’ * ‘b’

TPS: Teach Programming System 71

7 Program state manipulation
The program state can be changed by the start and stop keys.

Once a program is selected (refer to section Projects and programs to know how to select or create a
program) it could be started in different modes depending on how the start button is operated, the
selected execution mode and the selected TPS mode.

TPS can be in Manual mode or Auto mode.

• If the system is in Manual mode then the demand switch has to be enabled, otherwise
the system will prompt an error if intended to run a program. Refer to Demand switch section to
know how to enable demand switch.

• If the system is in Auto mode, MOT button should be pressed to
enable the system.

Once the system is enabled, a drive enable status icon will be depicted in green. Otherwise it
will be red.

The following table describes the program execution behaviour:

To change the operation mode, step button has to be pressed to toggle between step mode
and continuous mode .

This section is only applicable to TPS. The program execution behaviour will be different if it is
performed through Motion Perfect. Refer to RPS documentation for more detailed information.

TPS mode Program execution behaviour

Manual

Step mode: program will step one line when the button is pressed and, if the
instruction has not been completed, stopped when released. If the instruction has
finished before release start button then the program will remain paused until stop
button is pressed.

Continuous mode: program will start running when the button pressed and hold, and
will pause when released. The program will stop when stop button is pressed.

Auto

Step mode: program will step one line when start button is pressed, no matter when
the button is released.

Continuous mode: program will start running when start button pressed and it will
stop when stop button is pressed.

TPS: Teach Programming System 72

8 Settings

8.1 About

In this section it is shown information about the version of the system: controller version, serial
number, controller type, UniPlay version and RPS version.

Figure 8-1: About page

TPS: Teach Programming System 73

8.2 IO configuration

Every system has different IO configuration. In this page it will be possible to address the different
physical IOs with RPS.

The inputs should be set as per physical wiring of the components.
It could be the possibility Servo, Error reset and Safety door do not exist in the real system. For those
ones, a -1 value has to be set. This will tell to TPS no real input has been set for that particular
component.

In the case of Error reset, if there is not real input and -1 is set, Refresh button has to
be pressed to reset the errors in case they occur (refer to section 4.4 Warning Error window).

Figure 8-2: IO configuration

TPS: Teach Programming System 74

9 Error and warning codes

9.1 Axis status codes

9.2 Robot status codes

AS_2 Communications error to remote drive

AS_3 Remote drive error

AS_4 In forward hardware limit

AS_5 In reverse hardware limit

AS_8 Following error exceeds limit

AS_9 FS_LIMIT active

AS_10 RS_LIMIT active

AS_12 Pulse output axis over-speed

AS_16 AXIS_FS_LIMIT active

AS_17 AXIS_RS_LIMIT active

AS_21 FEC 26: Robotics runtime 1-hour free limit. Reset the controller

RS_0 WORLD_FS_LIMIT active

RS_1 WORLD_RS_LIMIT active

RS_2 ROBOT_FS_LIMIT active

RS_3 ROBOT_RS_LIMIT active

RS_4 TCP_FS_LIMIT active

TPS: Teach Programming System 75

9.3 TPS system codes

RS_5 TCP_RS_LIMIT active

RS_7 Robot following error exceeds limit

RS_8 Wrist singularity

RS_9 Alignment singularity

RS_10 Elbow singularity

RS_11 Max speed limit

RS_12 Robot collided

TE_0 Jog attempted out of Manual mode. Select Manual mode

TE_1 Jog attempted while E-Stop is pressed. Release E-Stop and enable robot

TE_2 Jog attempted without enable the robot. Press demand button

TE_3 Jog attempted with servo disabled

TE_4 Jog attempted while a program is running

TE_5 Jog attempted while move buffers are not empty

TE_6 Jog attempted in linear while in singularity. Jog in joint mode to go out of singularity

TE_7 Attempting to run a program while E-Stop is pressed. Release E-Stop and enable robot

TE_8 Attempting to run a program without enable the robot. Press demand button

TE_9 Attempting to run a program without enable the robot. Press MOT button

TE_10 Failed to enable the robot

TPS: Teach Programming System 76

9.4 RPS Architecture codes

TE_11 Jog speed 0%

RA_0 Error status because E-Stop. Release E-Stop and press reset button

RA_1 Error status because MOTION_ERROR. Press reset button to clear the error

RA_2 Error status because SYSTEM_ERROR. Press reset button to clear the error

RA_3 Error status because MOTOR output is off. Press reset button to clear the error

RA_4 Error status because WDOG turned off unexpectedly. Press reset button to clear the error

