Machine and Robot in Harmony

TPS: Reference guide

Trio Motion Technology

Trio Robotics Series

First Edition ¢ 2020

Revision: 1.4

Trio Programming Guides are designed to aid learning of the TrioBASIC language through description and
examples. Each one will cover a particular topic and discuss which commands and parameters in the TrioBASIC are
required to complete the task.

A general understanding of TrioBASIC is required and it is recommended to attend an introduction to TrioBASIC
training course. The programming guides are not a replacement for the TrioBASIC help files which can be found in
Motion Perfect as well as the manual which cover each command and parameter in more detail and should be
referenced when required.

Any examples given in the programming guide will work and have been tested on an isolated controller. If you
choose to use these examples on a machine, please take care that it will not cause damage or injury and that they
are correctly included in the project changing parameters and values where required.

All goods supplied by Trio are subject to Trio’s standard terms and conditions of sale.

The material in this manual is subject to change without notice. Despite every effort, in a document of this scope
errors and omissions may occur. Therefore, Trio cannot be held responsible for any malfunctions or loss of data as
a result.

Copyright (C) 2000-2018 Trio Motion Technology Ltd. All Rights Reserved

UK | USA | CHINA | INDIA
www.triomotion.com

SAFETY WARNING

During the installation or use of a control system, users of Trio products must ensure there is no possibility of
injury to any person, or damage to machinery.

Control systems, especially during installation, can malfunction or behave unexpectedly.

Bearing this in mind, users must ensure that even in the event of a malfunction or unexpected behaviour the
safety of an operator or programmer is never compromised.

This document uses the following icons for your reference:

é w =

Information that relates Information to highlight Useful tips and Example programs.
to safety issues and key features or techniques.
critical software methods.

information.

1
2

Contents

TPS Teach Pendantccceiiiiiiiiiiiiiiiiiiiiieteiteeeeeeneeeneeancesnsennsenncsanssansssnssnnsennsannsanns 1
LI T2 1= Tl 1
P20 R 10 { oo [V o1 o s TR TP PP OPPPPPPPP 1
D A U= Yol YoV [or= Y o Y=ol ot- 14 o] o FF PP PPPPPPPRS 3
D Y- 1 =Y AV oo 0] o Yo 0[]) £ TP PP PPPPPPPPRS 4
20 T N =] (o o 5
2.3.2 Demand SWILCH ..ouiuuinii i 5
P2 B B =3V | el [PPN 7
Declaration of CONfOrMItY...ccciiiiiiiiiiiiiiii i i iiteeeteeeteeetenereantenasensensennsennsennsennees 9
TPS: Teach Programming SYStemM....ccciireiiiiiiiiiiiitinerereteretesatesacesasesasennsesnsennsennsennses 10
4.1 Virtual Teach Pendant casingccooeeeeeiiiii i 10
.2 KOYPAA. oo 11
L B & [0] 4 L= 1= o O 14
4.4 Warning / €rror WINOOWeeeeiiivieeeiiiieeeeeireeeeeeteeeeeetteeeeeeetveeeesebeeeeesetseeeesesbeeeeseteeseessseeeesnns 15
R] - U1 15
A o - PPt 15
R T | 1 16
A5 SPEEA ..o 18
A6 JOZ MOUES. e eie et 19
I - | VL3 o - | T PSP PO P PP UPPOPPPPPN 19
4.8 Behaviour in different Modes........cooo i 20
A.9 USEI LEVRIS ..ttt et e s e e st e s s e e e e st e e e abneeeeaans 20
L (O B | =Y o e 0 1= o 1O OO PP PP PP 22
O R X A G I/ OSSO PSR 25
4,12 TOOIS dIMENSIONS ettt ettt e e s ettt e e sab e e s eabb et e s eabbeee e smbeeeeeabeeeeesans 28
A.13 TOOIS COMISION. ...eieiitiieee ettt ettt ettt e e sttt e e s sttt e s e bt e e e saabeeeeesbneeeesans 33
414 OBJECE FramBS ..o c e e 34
415 RODOT Frames. .. cii ittt ettt e e sttt e e s ettt e e s s bttt e e sabee e e e e beeeeeaan 37
4.16 ColliSion OBJECLS .cceeeeeeeeeeeee e 39
4.17 Applications: Palletizer ... 41
Projects and ProOgramsS......ciieeiiiieeteirneteeenetereneteesnasceenesessnsscssnssessnsscesssscesnsscasnsscsnnsee 45

Lo R o oY1=t o o =T =T S 45

5.2 PrOSram EITOr .uuueeeeiiiiiiiititt s 46

5.3 MuUlti-line SEIECHION ...t e e e e e e e e e 47
5.4 Default MOVE VAIUESeiiiiiiieieeeee ettt e e e e s st e e e e e e e e s reeeas 47
5.5 Program types and PrOJECLSuuuuuuuuuuuuuiiuiieiiniiitt s 48
5.6 INSTIUCHIONS SET ..eeeiiiiiiiiiiieet s 50
5.6.1 TEACK . c. ittt e 50
5.6.2 MOVE ceeiitiiiiii ettt 50
5.6.3 RODOT..uuiitiiiiiii e 52
T TR B €T 11U o N 52
T 0 T I = N 52
T) o o N 53
o T T A =11 1o RV L= PP PP 53
T R T PPN 54
T T - L PPN 56
T ¢ T 0] o ot U = 56
5.6.11 RODOL FUNCLIONS «.eeteinitii ettt 58
T T 1 1 PPN 60
[200] 0o o 11T Tt [3 - e 61
6.1 MUILI-liNE SEIECTIONeiiiiieee ettt e s s e e e 62
6.2 DefaUlt MOVE VAIUEBS ...ccouiiiiiiiiee et et e s s e e s 62
6.3 Library and fUNCLION LY PeS. ...ccoouriiiiiiiiiiee et e 63
6.4 FUNCLIONS: Create and iNSEIT........ciiiiiiiieiiiieee ettt e e s e e e s 65
Program state manipulationceceeieieiieiiiiieitereereerneerneesnseenscenscenscenscenscanscanacnns 71
Y =] o] T S PP 72
230 R Y o To TV A O P PP PP P PP PR PPPOP 72
8.2 1O CONTIGUIALION . .uuiiiiiiiiiiiiiiit e nnnan 73
Error and WarNing COAEScuiiiuiiietereierniereeereeereeeenscensesnscssscsnscsnscenscensconscenscenseenscons 74
0.1 AXIS STALUS COUBS ... ittt ettt ettt ettt e e st e e e s sttt e e s bttt e e s abe e e e s eabbeee s snbeeeeeannees 74
I V0] o Jo] AE) =Y U E oo o [T PO 74
9.3 TPS SYStEM COUBS ...eeiiiiiiiiiiiitit ettt sttt st sr e st s e e sar e sre e e sr e e e sareesneee e 75

9.4 RPS ArCHRITECIUIE COUES .niiiitiiiiieiee ettt et e et e e et s e e et e e st s e e saaseesabaseseannseesenn 76

1 TPS Teach pendant

The Teach Programming System allows programming the robot in a managed and safe environment,
using a real or virtual system.

The pendant is based around Trio’s UNIPLAY HMI and can be used as a “real” or “virtua
pendant. The system includes extensive software and preconfigured motion control functions, which
permit the controlling of all standard types of robot with reduced development time.

2 The device

2.1 Introduction

A teach pendant is a device by which an operator can jog a robot and create programs in a friendly and
easy way. Thanks to its safety features and buttons it is completely secure to control a robot in a safe
environment.

I” III

on-screen

Figure 2-1: Teach pendant device

TPS: Teach Programming System 1

A virtual teach pendant has been developed that, along with other Motion Perfect robot tools, provides
a virtual robot environment to design and debug robot solutions over PC.

File Tools Inspector

L1 o O; Default L@ y
o1 47 Default 1% Defaut - 30%

Teach Programming System

Figure 2-2: Virtual pendant

TPS: Teach Programming System 2

8" DISPLAY

USER DEFINED BUTTONS
LED’S

use

KEY SWITCH

Processor

Memory

Micro SD card

Display

Pendant Software

Membrane Keys

Communication

Stylus

2.2 Technical specifications

276.6mm

E-STOP
STYLUS

Figure 2-3: teach pendant device specs

32 bit RISC Cortex

512 MB DDR

Upto 32 Gb

87 (640 x 800) touch screen

Windows CE Embedded 7

31 user definable keys (with Motion
Perfect 4)

Ethernet
USB 2.0

Included

Safety Hardware

Protection Rating

Input Voltage

Size (w x d x h) mm

Weight

Cable

238.6mm

3 POSITION ENABLE SWITCHES

Front mounted 3 position E-Stop.
2 x rear mounted 3 position enable
switch.

IP6S

24V DCvia junction box (included)

276.6x53x238.6

2kg

Bm 26 pin shell type. RoHS
compliant (connects to supplied
junction box)

TPS: Teach Programming System 3

80mm |
A5 v = -
E | E iy e e]
E | E =3 =
A
e - e .-\\N'v< N
= = — I
—-— -—
10mm 18mm
-— =

63mm
49mm

4 [x1] Ethernet 12|
4 ESW2.0
looo0oo0O0 E-Switch [—o——————
Left \
©coo0o0 € 9 ESW2.1
9
TB1

E-Switch Right Estop NO Estop NC Key Switch _

Comection I_/, 1 F/Ll l—l_\l

w
B~
wn
@
~
=]
o
=
(=]
=
[
=
N

1 2
External
Connection

ESW1.0

N/A

ESW1.1
E51.0

ES1.1

ES2.0

ES2.1

KS Common

24y
A
KS1
KS2

Figure 2-4: Junction Box

RPS has to be configured depending on what inputs had been used to connect the junction box with the
controller.

Refer to section in |0 config section of TPS, page 73 of this document, to set the inputs numbers into the
system.

2.3 Safety components

This section describes safety components and procedures to be used when the Teach Programming
System is operated.

TPS: Teach Programming System 4

However, it does not cover how to design for safety nor how to install safety related equipment.

‘7‘: The safety components must be wired accordingly with safety standards that regulates
automation and it has to be conducted by a qualified person.

In the case of using a Virtual Teach Pendant, the safety components wiring is done through a
software casing mechanism. For more details go to Virtual Teach Pendant casing section, page 10.

2.3.1 E-Stop

An emergency stop is a state that overrides any other robot control, disconnects drive power from the
robot’s motors, stops all moving parts and disconnects power from any potentially dangerous functions
controlled by the robot system.

An emergency stop state means that all power is disconnected from the robot except for the manual
brake release circuits. The E-Stop button can be configured in |0 config section of TPS, page 73 of this
document.

The E-Stop button can be found in the upper right corner of both real and virtual teach pendant and it
has the following outlook:

Figure 2-5: E-Stop real Teach Pendant Figure 2-6: E-Stop virtual Teach Pendant

It must be performed a recovery procedure in order to return to normal operation.

The recovery procedure is triggered through the input “Error Reset” that can be configured in 10 config
section of TPS, page 73 of this document.

2.3.2 Demand switch

Demand switch component is an enabling device, manually operated constant pressure three position
push-button. The Teach Pendant is equipped with two demand switches, positioned at the left and right
back side of the device, allowing for a left and right-handed operation.

TPS: Teach Programming System 5

The demand switch can be found at the back of the real Teach Pendant and at the front left side of the
virtual one with the following outlook:

Figure 2-7: Demand switch real Teach Pendant Figure 2-8: Demand switch virtual Teach Pendant

The demand switches can be in the following three positions:

Position | Function Demand switch Contacts

1 Home position Is not pressed Enabling output are open
2 Enabling Is pressed Enabling output are close
3 Panic Is pressed strong Enabling output are open

The Teach Pendant should be hold by the operator in a comfortable position, where demand switch can
be pressed with one hand while programming or operating the keypad with the other hand.

A recommended way of holding it could be as the following picture:

TPS: Teach Programming System 6

Figure 2-9: Demand switch pressed

& When demand switch is in enabling function, the system is in active status and the motors are
powered, allowing for movement through different functions but not initiating them. In any
other position, the motors will not be powered and the system will be safely stopped.

This component will enable the device only in manual mode. In auto mode Demand switch component
is disabled and MOT button should be pressed to enable the system.

2.3.3 Key switch
There are three different modes where the system can be:

e Manual: to operate the system, demand switch has to be enabled. The maximum speed will be
set as WORLD_POS_REDUCED_SPEED and WORLD_ORI_REDUCED_SPEED, set by the system
integrator.

Mot
e Auto: in this case demand switch will be disabled and MOT button ! should be pressed to
enabled the system.
e Disable: Teach Pendant cannot be operated.

Three contacts key switch gives the possibility of changing between those three different modes secured
with its physical key.

The Key switch can be found in the upper left corner of both real and virtual teach pendant and it has
the following outlook:

TPS: Teach Programming System 7

Figure 2-10: Key switch real Teach Pendant

File Tools

Run @@

Figure 2-11: Key switch virtual Teach Pendant

All these safety components have an icon status representation in TPS. Once wired and configured in
TPS (shown in section 7.2 10 Configuration) the icons will show the status of the buttons as follows:

200

Manual, Auto, Disabled mode

" -

Estop released, Estop pressed

Drive enabled, Drive disabled

T
A

o

Demand button released; Demand button pressed

TPS: Teach Programming System 8

3 Declaration of conformity

This declaration of conformity is issued under the sole responsibility of the manufacturer.

We declare that the following product is in conformity with the essential requirements of the following
European Council Directives.

The object of the declaration described above is in conformity with the relevant European Union
harmonisation legislation in accordance with BS EN 50581:2012 and BS EN 17050-1:2010.

Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the
restriction of the use of certain hazardous substances in electrical and electronic equipment
Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the
harmonisation of the laws of the Member States relating to electromagnetic compatibility.
EN55032:2015/AC: 2016 - Electromagnetic compatibility of multimedia equipment. Emission
Requirements.

EN55024:2010 - Information technology equipment. Immunity characteristics. Limits and
methods of measurement.

IEC 61000-4-2, 2" Edition, Dec 2008 - Electromagnetic compatibility (EMC) - Part 4-2: Testing and
measurement techniques - Electrostatic discharge immunity test.

IEC 61000-4-3, 3.2 Edition, Console with AMD 2, April 2010 - Electromagnetic compatibility (EMC)
- Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic
field immunity test.

IEC 61000-4-4, 3™ Edition, Apr 2012 - Electromagnetic compatibility (EMC) - Part 4-4: Testing and
measurement techniques - Electrical fast transient/burst immunity test.

IEC 61000-4-5, 3" Edition, May 2014 - Electromagnetic compatibility (EMC) - Part 4-5: Testing
and measurement techniques - Surge immunity test.

IEC 61000-4-6, 4t" Edition, Oct 2013 - Electromagnetic compatibility (EMC) - Part 4-6: Testing and
measurement techniques - Immunity to conducted disturbances, induced by radio-frequency
fields.

IEC 61000-4-8, 2" Edition, Sept 2009 - Electromagnetic compatibility (EMC) - Part 4-8: Testing
and measurement techniques - Power frequency magnetic field immunity test.

The notified body: Compliance Certification Services Inc. Kunshan Laboratory, Kunshan City, Jiangsu,
China, duly issued the CE EMC Test certificate.

Report Number: C180913E14-ET

Dated: 27" September 2018

TPS: Teach Programming System 9

4 TPS: Teach Programming System

4.1 Virtual Teach Pendant casing

Virtual Teach Pendant with compact casing and key switch, E-Stop and demand buttons can simulate the
same behaviour as real Teach Pendant. Key switch, E-Stop and demand buttons can be configured with
avirtual or real output. In the case of real controller, those outputs should be wired to the inputs selected
for the real buttons, so the actions will be triggered either with real or virtual Teach Pendant. In the case
of Simulator controller, virtual inputs and outputs are assigned to the same numbers, triggering the
correct actions using inputs or outputs.

The output configuration in virtual Teach Pendant can be found in the left top menu under “Tools ->
Options”. Then, under “Casing” tab, “Compact casing for HTS-A013-1C6 with key, emergency and
demand button” casing option can be selected. “Enable I/O mappings” has to be selected as well, along
with the desired output numbers.

@ Default
a1 7 Default I, Defaut

IP Address | Ports | Mode | MC Events| Locales Casing

Casing: |Cnmpact casing for HTS-A013-1C6 with key, emergency and demand button j

¥ Enable I/0 mappings
Emergency stop: |15 ~| ¥ Active Low

Demand button: |10 ~| T Active Low

Key Switch 1: 9 < I Active Low
Key Switch 2: 8 4 I Active Low

Preset configuration Custom - oK ‘ Cancel ‘

Figure 4-1: virtual pendant output mappings

The TPS needs to know what inputs have been configured for the safety components, for both cases real
or virtual ones. For more details in how to do this configuration please, refer to |0 config section, page
73 of this document.

TPS: Teach Programming System 10

4.2 Keypad

EEEEABE

Figure 4-2: menu keypad

User interface

Enter the home page of user defined interface

Settings

Enter the settings interface page

dle|e

Program list

Prompt the list of programs in the current project

Program editor

Enter the program editor page

“ F.__ '_IEI_' IEP\

Positions

Prompt axis position window

>

Messages / Log

Prompt the messages and log interface

TPS: Teach Programming System 1 1

Figure 4-3: function keypad

V+

F1
F2
Mot | | Motor enable Servo ON and OFF (Auto mode only)
Rob | | Robot selection Select different robot
Jo Coordinate system . .
g) Change the jog coordinate system
! ! | selection
FiB
Step Operation mode Change the program running mode between step and continuous mode
V- Jog speed minus Decrease the global jog speed

Jog speed plus

Increase the global jog speed

TPS: Teach Programming System 12

Figure 4-4: axis keypad

Stop program

Stop program, robot execution and clear move buffers. Refer to section Program
state manipulation for more information about stop program.

Execute program

Start program execution. Refer to section Program state manipulation for more
information about the different execution modes.

Jog axis negative

Under servo ON condition, jog axis backward

Jog axis positive

Under servo ON condition, jog axis forward

TPS: Teach Programming System 13

4.3 Home screen

System status windows will show warnings and errors that happens in every robot axis. It will show the
axis number, error code and the message itself.

2 P Y

1.) 1 o @ Default ';. ol
: - SW | 50%
“ 7 pefaut 1. Defaul *

Teach Programming System

Figure 4-5: Home page

TPS: Teach Programming System 14

4.4 Warning / error window

If an error or warning exists, system log and status button will change its colour to yellow warning.

4.4.1 Status

The statusis divided in System and Joints. General System errors or warnings will be shown under System
tab. Individual Joint errors or warnings will be shown under each Joint tab.

. 7
Errors can try to be cleared by pressing refresh button. ~
— _ 10 @ Default
— > o 1) ull
- é .2. 3= l’ sl ¢ Default E_- Default S| 100%
Status Log Drive

System Joint O Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Error code Description

TE_2 Jog attempted without enable the robot. Press demand button

TE_3 Jog attempted with servo disabled

< [»]
3 0 Close

Figure 4-6: System status window

AN
Please, refer to Error and warning codes section for a full list.

4.4.2 Log

The log window will show and store warning and error messages. Up to 2048 messages will be stored in
flash memory. The messages will be compound by date and time of message generation, number of
seconds the controller is active and the message itself.

The whole group of messages can be cleared by clicking trash button.
A special log entry is stored every time the controller is powered up, such as:

600:00014@1ms [0.05 2.0296000 $SO0000 $0c000003]

TPS: Teach Programming System 15

600 = Controller type

00014 = Controller serial number
@1ms = Servo period cycle time
0.05 = Bootloader version
2.0296000 = Firmware version

S0000 = FPGA number

S0c000003 = Feature Enabled Codes

D

Status Log

Date Time

06/Feb/2019 14:27:49 [
06/Feb/2019 10:15:46 [
05/Feb/2019 17:00:46 [
05/Feb/2019 17:00:46 [
05/Feb/2019 16:09:55 [
05/Feb/2019 16:09:55 [
05/Feb/2019 16:09:46 [
05/Feb/2019 16:09:44 [
05/Feb/2019 15:04:51 [
05/Feb/2019 15:04:22 [
05/Feb/2019 15:03:38 [
04/Feb/2019 16:30:21 [
04/Feb/2019 16:30:20 [
04/Feb/2019 16:30:20 [
04/Feb/2019 16:30:08 [

I}

4.4.3 Drive

- >— o @ Default .
A Y= 19 1 T NF
= = o8y Default 2 Default

Drive

Message

15128.302] Elbow Singularity axis [11]
5.059] 600:00234@1ms [0.05 2.0296000 $0000 $04200001]
3067.724] Wrist Singularity axis [14]
3067.715] Wrist Singularity axis [14]
16.238] Elbow Singularity axis [11]
16.229] Elbow Singularity axis [11]
7.847] Wrist Singularity axis [14]
5.139] 600:00234@1ms [0.05 2.0296000 $0000 $04200001]
34.423] Elbow Singularity axis [11]
5.593] 600:00234@1ms [0.05 2.0296000 $0000 $04200001]
5.055] 600:00234@1ms [0.05 2.0296000 $0000 $04200001]
3639.033] Max speed reached: 10092672.949219 Units/s in ax
3639.033] Max speed reached: 3650145.263672 Units/s in axi
3639.033] Max speed reached: 6527.618408 Units/s in axis 1
3627.309] Wrist Singularity axis [14]

<1

Figure 4-7: System log window

Users can develop their own logic to catch Drive errors and send messages to the teach pendant under

Drive tab.

To show a user drive error on teach pendant, VR(DriveError) has to be = 1.

To reset it to its normal status, VR(DriveError) has to be = 0.

To trigger the events, VR(DriveMessageTrigger) has to be incremented.

The messages have to be stored in VRs and have been divided by axis: VR(DriveMessageAxis1),
VR(DriveMessageAxis2), VR(DriveMessageAxis3), VR(DriveMessageAxis4), VR(DriveMessageAxis5) and

VR(DriveMessageAXxis6).

7~
=

TPS: Teach Programming System 16

To clear the messages from the Drive window, the refresh button has to be pressed. This action will
turn the flag VR(DriveErrorReset) = 1. The user will have to handle in his logic the drive error reset
procedure and clear all VRs error messages. The window will be clear automatically after press refresh
button, so VR(DriveMessageTrigger) should be triggered if some errors persist after the reset procedure.

Example:

INCLUDE "RPS A INITIALISE VARIABLES"

'Trigger error flag, so it will highlight status icon on pendant
VR (driveerror) =1

'Set error messages:

VR (drivemessageaxisl) = "Error in drive 1"
VR (drivemessageaxis3) = "Error in drive 3"

'Trigger drive errors:
VR (drivemessagetrigger) = VR(drivemessagetrigger) + 1

'Reset errors:

'press refresh button -> VR(DriveErrorReset) =1
IF VR(driveerrorreset) = 1 THEN
VR (driveerrorreset) = 0

'Reset logic:

'error drive 1 persist

VR (drivemessageaxisl) = "Error in drive 1 persist"
'error drive 3 cleared

VR (drivemessageaxis3) = 0

'Trigger drive errors
VR (drivemessagetrigger) = VR (drivemessagetrigger) + 1
ENDIF

TPS: Teach Programming System 17

o @ pefaut

= - 1T 4 3= 1 T, -
- 2 = E \ 3= & a1y Default 55, Defaul SN 100%
Status Log Drive

Message

Error in drive 1
Error in drive 2
Error in drive 3

[($]

Figure 4-8: Drive error window

4.5 Speed

Jog speed can be set in percentages by Speed window.

\ 50.0 |

0o . a 2

Figure 4-9: Speed window

TPS: Teach Programming System 18

4.6 Jog modes

There are five different jog modes selectable sequentially by pressing Jog mode button. The button will
change its icon accordingly with selected mode.

NF Each axis moves independently. The robot arm moves
Joint around joint under demand range. The position of end-
effector is determined by joint orientation and position.

Q The end-effector moves straight along the world coordinate
system. The orientation uses extrinsic rotations. All the
World position of end-effector is defined by world coordinate. It is
possible that singularity point will occur when using world
coordinate.

The end-effector moves straight along the base coordinate
Base system. The orientation uses extrinsic rotations. The origin
point of the system is on the robot base.

T

o The end-effector moves straight along the tool coordinate
Tool system. The orientation uses intrinsic rotation. The origin
point of the system is on the tool like gripper.

The end-effector moves straight along the active object

@ Object Frame
frame. The orientation uses extrinsic rotations.

4.7 Status bar

Status bar will show the robot, tool, object frame and robot frame selected. All of them are selectable in
their specific pages.

i @ Default
e .
¥, Default £ Default

Figure 4-10: status bar

It is also shown the status of pendant (manual, auto, disabled), Estop, Servo and Demand buttons.

a Q 9 Manual, Auto, Disabled mode

4 Estop released, Estop pressed
= =
i Drive enabled, Drive disabled

TPS: Teach Programming System 19

\ ‘ Demand button released; Demand button pressed

Step mode

3
5 Continuous mode

4.8 Behaviour in different modes

The behaviour of the robot will change depending on what mode it is being operated in. The behaviour
is listed below.

Manual Mode: In this mode, Jogging is allowed. The speed of the robot will be limited to
WORLD_POS_REDUCED SPEED and WORLD_ORI_REDUCED_SPEED and the global override will be
applied to the reduced speeds. The robot will be enabled only using the demand button. The button
needs to be held pressed.

Auto Mode: In this mode, Jogging is prohibited. The speed of the robot will only be limited be the set
maximum speed and the global override will be applied to the program speed. The robot will be
enabled by closing the safety door (if that option is enabled) and pressing the MOT button.

Disabled Mode: In this mode, jogging and running programs is prohibited. The robot will not enable in
this mode.
4.9 User levels

The system will enable or disable different features depending on the selected user level. There are four
user levels as described below:

Level 1: Highest level with all authority in the system, all the functions and features are available. It has
been designed mainly for developers.

Level 2: Manufacturing level. For now, level 2 and level 1 share almost the same authority in the system.

Level 3: Customer engineering level. In this level users will not be allowed to configure system
information or change system configuration.

Level 4: This level is designed for operators who work around the robot. Only run edited programs and
start/stop/shut down the system or programs functions are available.

TPS: Teach Programming System 20

Feature Levell | Level2 | Level3 | Level4
Status and log Y Y Y Y
Jog Speed Y N
Jog Modes Y Y Y N
GTAs Y Y Y N
Tools Dimensions Y Y Y N
Tools Collision Y Y Y N
Object Frames Y Y Y N
Robot Frames Y Y Y N
Collision Objects Y Y Y N
Project Manager Y Y Y Y
Program Editor(Debug Buttons) Y Y Y Y
Program Editor(Program edition Buttons) Y Y Y N
Program Types and Projects Y Y Y Y
Instructions Set Y Y Y N
Settings Y Y N N
I0s settings Y Y N N

User level status. It is a button that shows the current user level and shows the user level window when
pressed.

L 1
ull

Figure 4-11: user level status button

The levels can be set through user level window. Higher level can set a lower level without password. To
set a higher level than the current one the correct password must be set.

Set User level

User level: Password

|Level 1 j No password needed

:

Figure 4-12: user level window

To change the password of a level, the button @ must be pressed.

It is only possible to change the password of a level from its level or higher.

Default passwords are as follows:

TPS: Teach Programming System 2 1

- Level 1: levell
- Level 2: level2
- Level 3: level3
- Level 4: level4

Characters allowed are the ASCII table.

To reset all passwords to default values, COORDINATOR_DATA(68) instruction has to be executed over
the terminal through Motion Perfect.

Change User level password

User level: New password
|Level 1 j

j sl
5

Figure 4-13: change level password window

4.10 Main menu

Main menu button will drop the main menu:

Projects Projects manager and
program editor

il GTAs
GTA page

Tools &
*@ Frames Tools and Frames menu
£y icati
=l Applications Applications menu
ml T
o=g IO Inputs / outputs page
I" Sedlle Setting page

TPS: Teach Programming System 22

Projects:

Projects
GTAs
Tools &

*@ Frames

Applications:

Projects
GTAs
Tools &

’@ Frames

sl icati

] Applications

S== /O

L1

"' Settings

i il 2 W

[
d

¥

i

-

Y
H =
Load/Save

Program
Editor

Function
Editor

-

i
M =

Palletizer

Teach P

Tools, frames and collision objects:

| Juju]
(1))
oom

'O

Projects

GTAs

Tools &
Frames

Applications

o

Settings

D

Y
A =

Object
Frames

Robot
Frames

Tools

Collision
Objects

-

\

Project manager window

Program editor page

Function editor page

Palletizer page

Object Frames page

Robot Frames page

Tools menu

Collision Objects page

TPS: Teach Programming System 23

Tools dimensions and collision:

= eEINE L
LR

Tools collision page

TPS: Teach Programming System 24

4.11 GTAs / GTAJs
GTA is the Global Targets Array which contains an array of globally available TARGET points.

It stores information of position and orientation in 3D space in the case of GTA and joint positions in
degrees for GTAJ. The TARGET data type represents a set of 6 values:

GTA (white back ground):
- X, Y, Z—for the coordinates of the point in 3D space in millimetres
- U, V, W —for the angular orientation in degrees

GTAJ (orange back ground):
- X VY,Z U,V, W -Up to six angular joint positions

An array of 1000 GTAs is available for use in all programs. In addition to the 6 coordinates GTAs can have
name assigned which can be used to reference them in programs.

_ = % _,g é 1 o @ Default b o ol
— = L 1
= = 2l ¢ Default 1 Default SN 50%
N -
Global Targets World mm
Index |Name X Y z u v 7] <y s7818
0 pt1 350.000 0.000 150.000 180.000 0.000 0.000 :
1 pt2 380.000 0.000 150.000 180.000 0.000 0.000 Y 2034
2 pta 400.000 0.000 150.000 180.000 0.000 0.000 :
3 ptd 420.000 0.000 150.000 180.000 0.000 0.000 Z 60.00
4 420.000 0.000 150.000 180.000 0.000 0.000 11
5 -20.000 30.000 150.000 0.000 0.000 0.000 U 180.00
B pté -20.000 30.000 150.000 0.000 0.000 0.000 :
7 pt7 -20.000 30.000 150.000 0.000 0.000 0.000 v 000
8 pte -20.000 30.000 150.000 0.000 0.000 0.000 12
9 pto -20.000 30.000 150.000 0.000 0.000 0.000 W 2861
10 pt10 -20.000 30.000 150.000 0.000 0.000 0.000 :
11
12 Joint - I3
13
1; J1 -40.00
16 J2 68.61 14
17
18 J3 100.00
19 J5
20 J4 000
21
22 J5 0.00
23 J6
24 J8 0.00
25 ﬂ
¥ Zeroentries [~ Multiselect
0O B

Figure 4-14: GTA page

=2 Save

On this screen you can see the range of GTAs that are in controller flash memory at the moment of entry
in this page. All the changes will be done in flash memory, so GTAs will never be lost even if controller
firmware is updated.

TPS: Teach Programming System 25

It is possible to save the whole table in the robot basic file “ROBOT_GLOBAL_TARGETS” (the program
will be overwritten with the new values). If a GTA is set by another program while GTA page is active, it
will be refreshed automatically.

W2

Move to GTA

Move to GTA button will move the robot to the selected GTA with the active tool and frames, at the
selected speed and mode. It will only be active in manual mode.

N T .
=) | Teach Cartesian

Teach cartesian button will store the current cartesian position in the selected GTA with a given name.
The position can be changed by jogging the robot with jog buttons of the Teach Pendant.

*‘9 Teach Cartesian

Teach joints button will store the current joints position in the selected GTAJ with a given name. The
position can be changed by jogging the robot with jog buttons of the Teach Pendant.

| shift up

¥ | shift down

Shift up and down buttons will effectively shift a selected GTA on position in the list. This will change the
index of the GTA.

& | Edit

Edit button will prompt an editor by which the operator can directly type-in a new GTA or modify the
coordinates or the name of a previously defined entry.

]ﬁ[Delete

It is possible to delete a GTA (or a range of GTAs by having Multi select check box checked) by clicking in
delete button. That entry will become empty in controller flash memory and GTAs screen but controller
program will still be having the entry until save button is pressed. This process will not delete entries
declared out of “ROBOT_GLOBAL_TARGETS” robot basic file.

TPS: Teach Programming System 26

Zero entries check box will collapse or expand the empty entries for a more compact representation.

Edit GTA: ptl

Name: |ptl |
X Y Z
| 350.000] | 0.000| | 150.000|
u Vv w
| 180.000] | 0.000| | 0.000 |
giwlelrjtjyjujlijolp

B |- T

Figure 4-15: Edit GTAs window

TPS: Teach Programming System 27

4.12 Tools dimensions

The tool offset is a transformation between the end-effector and the Tool Centre Point. It sets a distance
and orientation of a tool from the end effector to the TCP.

Similar to the target points it is presented as a set of 6 values:
- X, Y, Z—for the coordinates of the offset in millimetres
- U, V, W —for the angular orientation of the tip in degrees.

An array of 31 tool definitions is available for use to all programs. Unique name can be assigned to each
tool to be used to identify and reference it in programs.

= 5> —_ | i 0 & Default %
= = 1 3= b = — SNF 0%
— = 3— 0 ¢ Default E Default B

Tool Dimensions World mmis
Index Name X Y z u v w -
0 Default 0.000 0.000 0.000 0.000 0.000 0.000 i 3EIm
1 Gripper 5.000 0.000 100.000 0.000 0.000 0.000 ¥ 0.00
2 Torch 6.294 -0.423 271.315 0.000 0.000 0.000 :
3
. Z 51500
5
. U 18000
7
. v 80.00
]
En W 180.00
11
12 Joint -5
13
14 J1 0.00
15
16 J2 3.80
17
18 J3 -6.25
19 |
20 J4 0.00
21
22 J5 12.45
23
24 J6 0.00
25 ﬂ
Iv Zero entries

o A »

(i] 2 % 4 W

Figure 4-16: Tools page

=2 Save

On this screen you can see the range of Tools that are in controller flash memory at the moment of entry
in this page. All the changes will be done in flash memory, so Tools will never be lost even if controller
firmware is updated.

Itis possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If a Tool is set by another program while Tools page is active,
it will be refreshed automatically.

Select

TPS: Teach Programming System 28

It is possible to activate the selected Tool by clicking Select button. The selected tool will be highlighted
in green colour. Tool offset 0 is active by default.

& | Edit

Edit button will prompt an editor by which the operator can directly type-in a new Tool dimension or
modify the coordinates or the name of a previously defined entry.

@[Delete

It is possible to delete a Tool (or a range of Tools by having Multi select check box checked) by clicking in
delete button. That entry will become empty in controller flash memory and Tools screen but controller
program will still be having the entry until save button is pressed. This process will not delete entries
declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

'ﬁ"'-o" Calibrate

Calibrate button will lead to Calibrate page. In this page it will be possible to calculate the dimensions of
a tool performing a calibration procedure.

L} 3= 19 0 @ pefault N "
— : - <N 50%
= “l ¢ pefault 17, Defautt

Me.-2

]
W

Selected Tool: torch

End effector position

X: 333.00mm U 0.00°
Y: 0.00 mm V. 90.00 °
Z: 515.00 mm W 0.00°

Calibrated values

Figure 4-17: Tool calibration page

TPS: Teach Programming System 29

) Calibrate

Accept

0 Cancel

During the calibration procedure the robot must be moved to different positions and orientations trying
to keep the tip of the tool as close as possible to a pre-selected point in 3D space. Usually a calibration
object is fixed in a stable position relative the robot so that it can be used as a reference point.

The operator should jog the robot position and orientation until the tip goes as close as possible to the

reference object.

By pressing one of the grey tools images the values will be saved for that position and it will become

green, showing that position has been stored.

2 3\ 3=

Selected Tool: torch

.
I’ =
sl ¢ Default

0 @ Default X ot

© ooy | o
5 Derault e
u

End effector position
X: 333.00mm U: 0.00°
Y: 0.00mm V
Z: 515.00mm VY

Calibrated »

Save values for this position?

Q w

(%)

Figure 3-18: Tool calibration save position window

TPS: Teach Programming System 30

0 @ Default ot

BT .
D 2 L S = ;: Default 1. Default Q@ 0%

Selected Tool: torch

End effector position
X: 31751 mm U: 180.00 °
Y: 0.00 mm V: 67.58 °
Z: 506.81mm W: 180.00°

Calibrated values
Y

Figure 3-19: Tool calibration one position saved

Then the operator can continue by capturing the next point.

Once four points are captured the system will enable calibration button and, after this button had been

pressed, calibration algorithm will attempt to calculate the tool offset based on the input points that are
collected.

A deviation value (Serror) is displayed as well. It can be used as an indication for the quality of the point
and the operator can decide to recapture some of the points in order to improve the calibration.

TPS: Teach Programming System 3 1

\ — 1 E_ 0 & Defaut @ e

»— ~ull { Default E;a Default [

]
(2
"

Selected Tool: torch

End effector position
X: 386.69mm U: 177.08°
Y: -27.43mm 40.27 °
Z: 555.09mm W: -163.40°

Calibrated values
2 0.135

/S T ‘_

px Serror: 0.547
162.825

i

O O O ®:
Figure 4-20: Tool calibration process done

By pressing accept button the tool data will be stored to the controller and the new values will appear
in Tools page.

_ _ P Default

— S 25 A3 Lt b |
= S= <ol ¢ Defautt E;aDefault

Tool Offsets World mmis
Index | Name X Y z 1] % w &
0 Default 0.000 0.000 0.000 0.000 0.000 0.000 = X 350.00
1 gripper 50.000 0.000 100.000 0.000 0.000 0.000 Y 0.00
2 torch 48.308 0.135 162.825 0.000 45.000 0.000 :
3
3 Z 515.00
;’ U 180.00
g VvV 80.00
]
3 W 180.00
11
12 Joint s
13
14 J1 0.00
15
18 J2 3.80
17
18 J3 625
19
20 I J4 0.00
21
22 J5 1245
23
24 J6 0.00
B -]

¥ Zero entries
i = V1% & W

Figure 4-21: Tools calibration process done

TPS: Teach Programming System 32

4.13 Tools collision

The tool collision is an Oriented Bounding Box around the physical tool. It sets the centre position of the
OBB and the dimensions needed for the collision algorithm.

It is presented as a set of 6 values:

- CX, CY, CZ - centre position of the OBB on the object in millimetres
- DX, DY, DZ - half distances measured in every vector of the OBB in millimetres.

Tools collision is information stored in tool data, which means rules of tools offset apply here. An array
of 31 definitions is available for use to all programs. A unique name can be assigned to each tool to be
used to identify and reference it in programs.

AN
For more information please, refer to RPS manual.

— P s—- = 3: & 4 E i) % Default t’,’v 50.?:,
— ‘Q A = >— 1
“l ¢ Dpefault 17, Defautt

Tool Collision World mmis
Index Name cX cY cZ DX DY DZ -
0 Default 0.000 0.000 0.000 0.000 0.000 0.000 1 u HLn
1 Gripper 0.000 0.000 75.000 50.000 50.000 50.000 % 0.00
2 Torch 0.000 0.000 150.000 50.000 50.000 50.000 :
3
3 Z 515.00
: U 180.00
g vV 80.00
9
bt W 180.00
11
12 Joint s
13
14 1 0.00
15
18 J2 3.80
17
18 J3 625
18 [
20 Ja 0.00
21
22 J5 1245
23
24 Je 0.00
25 ﬂ

¥ Zero entries

0O B &S W

&

Figure 4-22: Tool Collision page

TPS: Teach Programming System 33

4.14 Object Frames

The object frame is a transformation between the global coordinate system and the coordinate system
of an object that is manipulated by the robot. By using object frames it is possible for target points to be
defined with respect in the coordinate system of the object. Like the target points itis presented as a set
of 6 values:

- X, Y, Z—for the coordinates of the offset in millimetres
- U, V, W —for the angular orientation offset in degrees.

An array of 31 object frame definitions is available for use to all programs. A unique name can be
assigned to each object frame to be used to identify and reference it in programs.

— 5 . 3— l) o @ Defaut ‘. ot
— - _- 9
- = >— “f 4 pefaut 1., Defaul SN 50%
'

Object Frames World mmis
Index |Name X Y z u v w a
1] Default 0.000 0.000 0.000 0.000 0.000 0.000 1 X 350.00
1 Camera 400.000 100.000 520.000 0.000 90.000 0.000 ¥ 0.00
> .
3
3 Z 51500
g U 18000
7
: v 80.00
9
% W 180.00
11
12 Joint s
13
14 J1 0.00
5
18 J2 3.80
7
18 J3 6.25
19 e
20 J4 0.00
21
22 J5 12.45
23
24 J6 0.00
25 ﬂ
¥ Zero entries

= £ 5

0O B P & W

Figure 4-23: Object Frames page

= Save

On this screen you can see the range of Object Frames that are in controller flash memory at the moment
of entry in this page. All the changes will be done in flash memory, so Object Frames will never be lost
even if controller firmware is updated.

Itis possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If an Object Frame is set by another program while Object
Frames page is active, it will be refreshed automatically.

TPS: Teach Programming System 34

Select

It is possible to activate the selected Object Fame by clicking Select button. The selected object frame
will be highlighted in green colour. Object frame 0 is active by default.

4" | Edit

Edit button will prompt an editor by which the operator can directly type-in a new Object Frames or
modify the coordinates or the name of a previously defined entry.

]ﬁ[Delete

It is possible to delete an Object Frame (or a range of Object Frames by having Multi select check box
checked) by clicking in delete button. That entry will become empty in controller flash memory and
Object Frames screen but controller program will still be having the entry until save button is pressed.
This process will not delete entries declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

'ﬁg Teach

Teach button will prompt the constructor window. In Object Frame constructor window, it will be able
to build an Object Frame by teaching three points as follows:

- First point should be at the base or the origin of the object coordinate system.
- Second point should on the X axis of the object coordinate system.
- Third point should on the Y axis of the object coordinate system.

Base

Alignment axis: * X Y

Name: | |

Figure 4-24: construct Object Frame window

TPS: Teach Programming System 35

Points are captures using Teach Pendant jog buttons.

The operator should adjust the robot position and orientation until the tip goes as close as possible to
the desired target point.

The corresponding button changes its state if the captured point is correct.

When three points are captured, the Object Frame is ready to be stored and the operator can select a
unique name for it so that it can be referenced in programs.

Edit button will prompt an editor by which the operator can directly type-in a new Object Frame or
modify the coordinates or the name of a previously defined entry.

Zero entries check box will collapse or expand the empty entries for a more compact representation.

Edit Object Frame: camera

Name: | camera |

X Y z
| 400.000| | 100.000| | 520.000|
U Vv W

| 0.000| | 90.000| | 0.000 |
giwleljrjtjyvjujijoljrp

Figure 4-25: Edit Object Frames window

TPS: Teach Programming System 36

4.15 Robot Frames

The robot frame is a transformation between the global coordinate system and the coordinate system
of the robot. By using Robot Frames, it is possible for multiple robots to be positioned about a common
global coordinate system. Like the target points robot frames are presented as a set of 6 values:

- X, Y, Z—for the coordinates of the offset in millimetres
- U, V, W —for the angular orientation offset in degrees.

An array of 31 robot frame definitions is available for use to all programs. Unique name can be assigned
to each robot frame to be used to identify and reference it in programs.

. = . 3— l) o @ Defautt oo o -
— - _- 9
- = >— “f 4 pefaut 1. Defaul W 50%
'

Robot Frames World mmis
Index Name X Y z 1] v w -
0 Default 0.000 0.000 0.000 0.000 0.000 0.000 = I
1 robat 1000.000 | 500.000 0.000 0.000 0.000 0.000 ¥ 0.00
> .
3
: Z 51500
H
2 U 180.00
7
: v 80.00
9
b W 180.00
1
12 Joint =is
13
14 J1 0.00
15
18 J2 3.80
17
18 J3 6.25
19 -
20 Ja 0.00
21
22 J5 12.45
23
24 J6 0.00
25 ﬂ
¥ Zero entries

= “J

0O B S W

Figure 4-26: Robot Frames page

= Save

On this screen you can see the range of Robot Frames that are in controller flash memory at the moment
of entry in this page. All the changes will be done in flash memory, so Robot Frames will never be lost
even if controller firmware is updated.

Itis possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If a Robot Frame is set by another program while Robot Frames
page is active, it will be refreshed automatically.

TPS: Teach Programming System 37

Select

Itis possible to activate the selected Robot Fame by clicking Select button. The selected Robot frame will
be highlighted in green colour. Robot frame 0 is active by default.

& | Edit

Edit button will prompt an editor by which the operator can directly type-in a new Robot Frame or modify
the coordinates or the name of a previously defined entry.

Edit Robot Frame: robot1

Name: | robot1 |

X Y z
' 1000.000| | 500.000| | 0.000 |
U Vv W

| 0.000| | 0.000| | 0.000 |
g w e r t y u i o p

Figure 4-27: Edit Robot Frames window

@[Delete

It is possible to delete a Robot Frame (or a range of Robot Frames by having Multi select check box
checked) by clicking in delete button. That entry will become empty in controller flash memory and
Robot Frames screen but controller program will still be having the entry until save button is pressed.
This process will not delete entries declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

Zero entries check box will collapse or expand the empty entries for a more compact representation.

TPS: Teach Programming System 38

4.16 Collision objects

Collision objects are an Oriented Bounding Boxes around the physical objects present in the scenario. It
sets the centre position and orientation of the OBB and the dimensions needed for the collision
algorithm.

It is presented as a set of 9 values:

- X, Y, Z-centre position of the OBB on the object in millimetres
- U, V, W —centre orientation of the OBB on the object in degrees
- DX, DY, DZ - half distances measured in every vector of the OBB in millimetres.

An array of 32 definitions is available for use to all programs. A unique name can be assigned to each
object to be used to identify.

. - e : o @ pefault . ot
— 3= é 1 o

— 3 4 >— ul ¥ Default E Default S 50%

Collision Objects World mms

Index | Name cX cY CcZ cu cv cwW DX DY DZ - X 350.00
0 objectd 350000 |0.000 |50.000 |0.000 |0.000 |0.000 |50.000 |50.000 (50000 | | :

1 object! 450000 0000 400000 0000 0000 0000 50000 | 50.000 | 50.000 Y 0.00
! I

3
4 objectd 350000 |200.000 |10.000 |0.000 |0.000 | 0.000 |80.000 |80.000 | &0.000 z 91500
g U 180.00
7

5 v 80.00
9

% W 180.00
1

12 Joint -5
13

14 J1 0.00
15

16 J2 3.80
17

18 J3 -6.25
19 —

20 J4 0.00
21

22 J5 12.45
23

24 Jé 0.00
25 ﬂ

v Zero entries

= s
O B &S

Figure 4-28: Collision Objects.

= Save

On this screen you can see the range of Collision Objects that are in controller flash memory at the
moment of entry in this page. All the changes will be done in flash memory, so Collision Objects will
never be lost even if controller firmware is updated.

Itis possible to save the whole table in the robot basic file “ROBOT_TOOLS_AND_FRAMES” (the program
will be overwritten with the new values). If a Collision Objects is set by another program while Collision
Objects page is active, it will be refreshed automatically.

TPS: Teach Programming System 39

Select

It is possible to activate the selected Collision Objects by clicking Select button. The selected Collision
Objects will be highlighted in green colour.

Although is possible to define 32 Collision Objects, just 10 can be active at the same time.

Each object is activated per robot defined. It means an object can be active for a robot and not for other
existing one in the system.

& | Edit

Edit button will prompt an editor by which the operator can directly type-in a new Collision Objects or
modify the coordinates or the name of a previously defined entry.

Edit Collision Object: object1

Name: | object1 |

X Y z
| 450.000] | 0.000| | 400.000 |
U Vv W
| 0.000] | 0.000] | 0.000 |
DX DY DZ
. 50.000f | 50.000/ | 50.000]
7 8 9 .
4 5 6 &
1 2 3
0 - - = =

Figure 4-29: Edit Collision Object window.

]ﬁ[Delete

It is possible to delete a Collision Object (or a range of Collision Objects by having Multi select check box
checked) by clicking in delete button. That entry will become empty in controller flash memory and
Collision Objects screen but controller program will still be having the entry until save button is pressed.
This process will not delete entries declared out of “ROBOT_TOOLS_AND_FRAMES” robot basic file.

TPS: Teach Programming System 40

4.17 Applications: Palletizer

This function can create a palletizer. It separates the building process into several steps.

The first step builds a plane with size of three dimensions.
- 5 - T R 3= | o @ Default .

s 2 Ngf =
o= >— “f 7 pefaut 1 Default SV 50%

Pallet configuration

Name:

[ww |

X size: mm
Y size: mm
Inlay: mm

(i] >

Figure 4-30: pallet configuration window.

The second step is to design item size and position. The dimension of item and position of tool target.

TPS: Teach Programming System 41

— | a _ o @ Defaul
AR : 3_ 1 ’ T al
D =24 iz “f 7 pefaut 1. Default SN 50%

Item configuration

Item Dimensions F
X size: mm]
Y size: mm
Z size: mm

Tool Target on ltem

X Origin: mm
Y Origin: mm
Z Origin: mm

R Origin: 0° -~

:

(i] < >

Figure 4-31: item configuration window

The third step is to design number items of each layer.

- @ — o @, Defaut
— _a = 1 T all
- D2 m E \ 3= u :C Default I, Defaut SN 50%
Layer configuration
N# Items

Layer 1: Edit

Layer 2: Edit

layer3: | 0] Edit

Layer4: [o] FEdi
(i] < >

Figure 4-32: layer configuration stepl window

TPS: Teach Programming System 42

The objects on each layer can be organised by clicking Edit in Layer configuration page.

S a I ‘ 35 1 o @, Defaut

; 1 al
o= “f " Defaul I Defaut SN 50%

Layer 1 item list:

Item2
Item3
Item4

Auto generator

(i] <

Figure 4-33: item organiser window

TPS: Teach Programming System 43

The next step can put items on a virtual tray.

'y

P

\ e 1l -
— el
<~ ~o8 ¥ Default

& Default

«ull
EEE’J Default 50%

= Bay

Layer 8 |Empty 5
Empty N
Empty N
Empty -

Layer2 v

Layer 7
Layer 6
Layer 5
Layer 4
Layer 3

Layer 2 |Inlay <

L NN

Layer 1 |Layerl '

Layers configuration

Layer 16 |Empty 5
Empty N
Empty N
Empty -
Empty N
Empty N

Empty N

Layer 15
Layer 14
Layer 13
Layer 12
Layer 11

Layer 10

ANANANN

Layer 9 |Empty 5

Generate
points

i] =

Figure 4-34: layer configuration step2 window

The Generate Points button can define the start number from GTAs list.

Generate points
GTA start number

There is another application related to this palletizer application in pendant edit program list.

TPS: Teach Programming System 44

5 Projects and programs

5.1 Project manager

Projects and programs can be handled through project manager window.

i

Select project or program: Project contents:

)] MyRobotProject Fa PICKANDPLACE

)
rrEﬂ EF.H Close
Figure 5-1: project manager window

In this manager it is possible to save programs and projects into an USB stick connected to the teach
pendant if the controller button is selected.

If USB stick button is selected, its content is shown, and programs and projects can be loaded or deleted.

AN
Only one project with multiples programs can be stored in controller memory. For multiples projects
use an USB stick. Projects must be in root directory organised in folders.

TPS: Teach Programming System 45

5.2 Program editor

In program editor page is where a program can be edited, and it provides debugging facilities for robot
programs.

-
- L1 &0 @ Default . ot

3= - <N | 50%
D = = 2q,
V3 “1 7 Default 17, Defautt

Selected project: RobotPendantProject
Selected program:

...(_
I

1
2
13
¥4
35

J6

MOVEJ GTA $:=50 T:=TO_default 0:=0F_default Z:=0 ™ Multi select

o

Figure 5-2: Program editor page

Debug buttons:

Set the program pointer over the selected line. If the
program is stop then it will start it, pausing it over the
selected line (previous instructions will not be
executed).

|:{> Set program pointer

® Break point Toggle breakpoint on selected line.

Refer to section Program state manipulation for more information about how to start / stop
programes.

TPS: Teach Programming System 46

Program edition buttons:

Prompt the list of robot programs and the actions that

Program list
= can be done to them.
= It will auto-format the program for a more readable
= | Indent
form.
o= Comment and uncomment selected lines, group of lines
— | Comment

or insert comment in line.

Insert above

Shows the instruction list to be inserted above the
selected line.

Insert below

Shows the instruction list to be inserted below the
selected line.

& |Edit

It will prompt the corresponding window depending on
the selected instruction to edit.

oﬁ Copy / Cut / Paste

The selected line or multiple lines can be copied, cut or
pasted using this menu button.

@[Delete

Delete the selected line or multiple lines.

5.3 Multi-line selection

On the right lower corner there is a Multi select check box that allows up to 20 lines be selected at the
same time. It is possible to copy, cut, paste, delete and comment the selected group of lines at the same

time.

5.4 Default move values

Default move values can be accessible by the left lower corner link where, in this case, says MOVEJ S:=50
T:=TO_default O:=0F _default Z:=0. These values will be used by teach instruction explained below.

TPS: Teach Programming System 47

- | g — . o @, pefaut

= - 1 = . Ta. -t
- D m i Vic & ol ¢ Default 1%, Default SN 50%
Selected project:
Selected program:

Default Move values |

Move Type IF,)
Speet: (50
Tool: ()
OFrame: () 3
Precision: [0 | @
GTA type: IW’ =
GTAindex: [0 | 15

5

™ Multi select

12

Figure 5-3: default move window

5.5 Program types and projects
Y=

The program list button ~~ will prompt the program list window and what can be done to them. It
shows in a list all robot programs available in controller flash memory.

Project content

i3 PICK_AND PLACE N .
Fi5 SIMPLE_MOVES ﬁ Eﬂ

Edit
New
Duplicate
Rename

Delete

Figure 5-4: program list window

TPS: Teach Programming System 48

There are two different robot programs: Robot Programs (.ROB file extension) and Robot Basic Programs
(.RBS file extension).

Both have the same functionality, but robot programs can only contain the list of functions available
from pendant. Also, TPS can only edit robot programs. Robot basic programs can only be run and
debugged.

To select what type of robot program will be shown in the program list just simply press the buttons:

m
Figure 5-4: robot program type
It is possible to edit, duplicate, rename or delete a robot program or robot basic program selecting it on
the list and pressing the corresponding button.
To create a new robot program simply press New button and assign a unique name.
Robot basic program can only be seen if the system is in the correct level.

The picture below shows a blank new program called “PICK_AND_PLACE”:

— a a ‘ 3= L q Eo %Defeult s ot
= H = — sl 4 Defaul 1 Defauit SW 50%

Selected project: RobotPendantProject
Selected program: PICK_AND_PLACE

1

m—
i

2
13
¥4
35

J6

MOVEJ GTA $:=50 T:=TO_default O:=0F_default Z:=0 ™ Multi select

© > o ~ - s @ ®

Figure 5-6: program PICK_AND_PLACE recently created

To change the name of the project just simply press over the current project name,
“RobotPendantProject” in this case, and a keypad will be prompt.

TPS: Teach Programming System 49

5.6 Instructions set

A certain group of instructions can be inserted above or below of the selected line by clicking insert
above and insert below buttons.

— , o @ Default
—_ a T 4 1= [1 |= i Ta af
= a2 =m i Vi= 8\ vetaut I, Defau SN | 50%
Selected project: MyRobotProject ‘l'E

Selected program: PICK_AND_PLACE

1
TEACH ROBOT
MOVE BASE
SET GOsSUB
WAIT LABEL
SPEED STOP

STRUCTURES EMPTY LINE

FUNCTIONS FRAMES
MOVEJ GTA $:=50 T:=TO_default O:=0F_default Z:=0 APPS
= = =
0 ':> ® = = e > f‘ 35]ﬁ[

Figure 5-7: Instruction list menu

5.6.1 Teach

It is possible to speed up the process of inserting several moves of the same type and the same
parameters. In this case the GTA coordinates are captured from the current robot position instead of
from the GTA table. The coordinates are saved automatically in the next empty GTA starting from the
selected index in default move values window.

5.6.2 Move

Up to three move instructions can be inserted with move instruction window.

MOVE] is used to move the robot from one point to another along a non-linear path. All axes reach the
destination position at the same time. It is the quickest type of movement due to the axes move the
exact amount of degrees needed to reach the desired position.

MOVEL is used to move the robot from one point to another along a linear path. All axes reach the
destination position at the same time.

MOVEC is used to move the robot from one point to another along a circular path. All axes reach the
destination position at the same time. This type of move needs a middle point in the curve and the end
point.

TPS: Teach Programming System 50

MOVEIJREL is used to move the robot from one point to another, relative to the starting position, along
a non-linear path. All axes reach the destination position at the same time. It is the quickest type of
movement due to the axes move the exact amount of degrees needed to reach the desired position.

The speed of the move is an interpolated speed and NOT the speed of any individual axis or the end
effector.

A single joint can be moved by simply set all values of the target as 0 except the desired joint to move.

MOVELREL is used to move the robot from one point to another, relative to the starting position, along
a linear path. The end effector moves along the straight line between current point and target point in
cartesian space. All axes reach the destination position at the same time.

A single vector can be moved by simply set all values of the target as 0 except the desired vector to move.

MOVE

MOVEJ GTA | | Teach

Motion parameters:

- Y L B

DecelD:=l | @ Tool = |0
- X T —
S

Interrupt parameters:

Pl Je © ro=l |l ©
Default

Figure 5-8: MOVE instruction window

Itis possible to modify the behaviour of the movement according to some embedded parameters. These
parameters only affect the belonging move instruction. If a move instruction has no parameter or just a
few it will use the default values for any missing parameter. The available parameters are:

- S:Speed in degrees per second for joint moves and millimetres per second for linear and circular
moves.

- A: Acceleration

D: Decerelation

T: Tool offset.

- 0:0Object Frame.

C: Configuration (just for joint moves).

TPS: Teach Programming System 5 1

- Z: Precision (for linear and joint moves).

Use the current robot position storing the data into a GTA is possible through Teach button. If a GTA is
selected, the system will reteach it with the new axis values, otherwise the system will store the values
in a no active GTA, starting from the selected default index (4.4 Default move values).

After applying the changes, the system will store the data in both, controller volatile memory and in
ROBOT_GLOBAL_TARGETS file.

On the other hand, if cancel button is pressed, all the changes will be discarded.

AN
If a GTA is already selected, Teach button will overwrite its value with the current robot position.

5.6.3 Robot

The ROBOT command is used to direct all subsequent motion instructions and robot parameter
read/writes to a particular robot.

To select external axes BASE command has to be used.

Selected project: MyRobotProject
Selected program: PICK_AND_PLACE

%] ROBOT(0)

1

-
i

Figure 5-9: ROBOT instruction

5.6.4 Gosub

Stores the position of the line after the GOSUB command and then branches to the label specified.
Upon reaching the RETURN statement, control is returned to the stored line.

GOSUB structure can be nested up to 8 deeps in each program.

Selected project: MyRobotProject
Selected program: PICK_AND_PLACE

0 ROBOT(0)
1 GOSUB my_label

2 |

Figure 5-10: GOSUB instruction

-
I

5.6.5 Label

Labels are used as destinations for GOSUB commands and also to aid readability of code.

TPS: Teach Programming System 52

With a label RETURN instruction is inserted automatically as well. RETURN instruction can be inserted
as its own by selecting RETURN radio button on LABEL window.

Selected project: MyRobotProject =
Selected program: PICK_AND_PLACE =

0 ROBOT(0)
1 GOSUB my_label
2

y_label:
ETURN

~No o sw
4 3

Figure 5-11: Label instruction

AN
It is recommended to insert STOP instruction above any LABEL-RETURN structure to avoid execution

errors.
5.6.6 Stop
STOP instruction will stop the program execution at its current line.
Selected project: MyRobotProject =
Selected program: PICK_AND_PLACE =
0 ROBOT(0)
1 GOSUB my_label
2
Kj STOP
4
5 my_label:
6 RETURN
7

Figure 5-12: Stop instruction

5.6.7 Empty line

It will introduce an empty line to aid readability of code.

TPS: Teach Programming System 53

5.6.8 Set

Sets either digital or analog outputs to a given value, assign values to a VR or an already declared
variable or declare a variable.

SET

“ Declare |

as [BOOLEAN -|

- Set Var |

© SetVR |

© Set Analog Output |

|

© Set Digital Output |

|

Figure 5-13: Set window

Analog output has to set as 12 bits (+/- 10v)

AN
Only pre-configured Digital Outputs will be shown on the Digital Outputs combo box.

VR is an array of real numbers stored in flash memory. The size of the array depends of controller

model.

The type of possible variables that can be declare are the next ones:

- Boolean: 1bit binary value (TRUE or FALSE).
- Float: 64bit floating point number.
- Integer: 64bit signed integer value.
- String: ASCII text (1024 characters maximum).

String data type require size as an extra parameter.

Multiple variables can be declared in one instruction separated by commas.

If an invalid symbol is inserted or entry ends with a comma the window will show a message and Apply

button will be disabled.

Name:| n,m

a s d
z X
&l o =

Figure 5-14: multiple variable declaration

TPS: Teach Programming System 54

Assign values or variables value to a variable is also possible in set window. The variable list will be
accessible when Set Var is selected or through the button Var in set variable value window when
setting variable or VR value. If the selected variable is STRING datatype it will display a QWERTY
keyboard window at the moment of setting its value.

Variable list

I Datatype Variable i‘ I
 Declare FLOAT n :|
FLOAT m

& Set Var
« Set VR
« Set An:

- Set Dig
ﬂ |9 Cancel

Figure 5-16: Variable list window

Var TRUE FALSE DEL
Func ~ 7 8 9 /
sin =V 4 5 6 &3
cos n 1 2 3

tan () 0 . +

Figure 5-15: Set variable value window

The return value of the a robot function can be assigned to a variable of the same return datatype
through ‘Func’ button.

This will prompt a list of avaliable functions for the slected variable datatype.

Function list:
mul_ab

Figure 5-17: Function list window

TPS: Teach Programming System 55

5.6.9 Wait
Three types of wait are possible to set:

- Wait IDLE: wait until all motion in buffer of selected robot or axis is finished.
It is possible to add time in Wait IDLE, so the robot will hold for the number of milliseconds
specified after all motion in buffer is finished.

- Wait: WA() will hold up program execution for the number of milliseconds specified.

- Wait until: wait for selected input is ON or OFF.

WAIT

CwatiolEe [
wet s

“ Wait until IN | Cl=l]

Figure 5-18: Wait window

5.6.10 Structures
Structures instructions are compound by WHILE...WEND, REPEAT...UNTIL, IF...ELSE and FOR...NEXT.

WHILE ... WEND SET
REPEAT ... UNTIL WAIT
FOR ... NEXT SPEED

IF...ELSE STRUCTURES

Figure 5-19: Structures submenu

The commands contained in the WHILE...WEND loop are continuously executed until the condition
becomes false. Execution then continues after the WEND. If the condition is false when the WHILE is first
executed, then the loop will be skipped.

WHILE ... WEND

« WHILE set here
WEND

~ WEND

Figure 5-20: While...Wend structure window

The REPEAT...UNTIL structure allows a block of instructions to be continuously repeated until an
expression becomes TRUE. REPEAT...UNTIL loops can be nested without limit.

TPS: Teach Programming System 56

REPEAT ... UNTIL
REPEAT
& UNTIL set here

-~ REPEAT

Figure 5-21: Repeat...Until structure window

An IF program structure is used to execute a block of code after a valid expression. The structure will
execute only one block of instructions depending on the conditions. If multiple expressions are valid then
the first will have its instructions executed. If no expressions are valid and an ELSE is present the
instructions under the ELSE will be executed.

IF ... ELSEIF ... ELSE .. ENDIF

& |F set here THEN
ENDIF

~ ELSEIF THEN

C ELSE

- ENDIF

Figure 5-22: If...Elseif...Else structure window

WHILE...WEND, REPEAT...UNTIL, IF...ELSE structure instructions can be set by bool condition builder

window. It is a wizard that helps users set the condition for structure instructions. The conditions are
built in the following format:

variable - relational operator — variable
logical operator

variable - relational operator - variable

AND
OR

Figure 5-23: logical operators

TPS: Teach Programming System 57

WHILE
Condition
o o [] - [e fon]

AND IN READ_OP
IN(5) = ON
AIN AOUT
VR TABLE
Value VAR

8+ v

Figure 5-25: Condition builder window

= <>
< >
o= =

Figure 5-24: relational operators

A FOR...NEXT structure is used to execute a block of code a number of times.
FOR ... NEXT

“FOR | = | TO | |
NEXT

« NEXT

Figure 5-27: For...Next structure window

On entering this structure, the variable (previously declared) is initialised to the value of start and the
block of instructions is then executed. Upon reaching the NEXT command, the variable defined is
incremented. If the value of the variable is less than or equal to the end parameter, then the block of
instructions is repeatedly executed. Once the variable is greater than the end value the program drops
out of the FOR...NEXT.

FOR...NEXT loops can be nested up to 8 deeps in each program.

5.6.11 Robot Functions

Already defined Robot functions can be called in robot programs to do specific tasks or to have a cleaner
code.

TPS: Teach Programming System 58

TEACH ROBOT

MOVE BASE
SET GOSUB
WAIT LABEL
SPEED STOP

STRUCTURES EMPTY LINE

FUNCTIONS FRAMES
AFPS

— —)

= I 5 &‘ 3-5 @[

Figure 5-28: Function list window

This will prompt a list of avaliable functions for the slected variable datatype.

Function list:
mul_ab

Figure 5-29: Function menu

Assign the return value of a function to a variable is possible through ‘Set’ window (refer to section 5.6.8).

5.6.12 APPS

This application can design a conveyer system compare with former palletizer system. There are
several blocks to determine some parameters needed in the conveyer and palletizer system.

TPS: Teach Programming System 59

PALLET SYSTEM

Item up

ww_19 OF item:
Item down: OF default" |
"ww_24"

Figure 5-30: pallet system

Description of each parameters:

e Item_up: The position pick item up

Iltem_down: The position pick item down

First GTA: First GTA in the system

Last GTA: Last GTA in the system

Tool Output: The output tool like gripper

OF item: Offset point on the conveyer

OF pallet: Offset point on the pallet

Sensor input: Vision or light sensor input of system
Middle: The middle point of tool.

Tool output

&7 Middle:
| IIWW_].B" |

OF pallet:
| "OF _default" |

TPS: Teach Programming System 60

6 Robot functions

Users can define robot functions and call them in robot programs, giving a lot of programming
possibilities. Robot has to be defined in Robot Function Libraries. These ones can be Robot Functions or
Robot Basic Functions depending on user level.

Robot functions can be defined in functions editor which is accessible through Main menu -> Projects ->
Function editor.

D =i\
Projects Load/Save

o50= i=— Program

i GTAs = Editor
Tools & e Function

*@ Frames == Editor

Figure 6-1: Function Editor access

The function editor aspect is very similar to program editor.

— O PR VS i Rp peraut Loy | ou
= H = — sl 4 Defaul I, Defau SW | 50%

i
il

Selected library:

1
2
3
¥4
35

J6

MOVEJ 8:=50 T:=TO_default O:=0F _default Z:=0 ™ Multi select

o

Figure 6-2: Function Editor

TPS: Teach Programming System 61

Program edition buttons:

Forces compilation of the selected Robot Function
Library.

Compile

Prompt the list of Robot Function Libraries and the
actions that can be done to them.

|

Function library list

It will auto-format the program for a more readable
form.

Indent

Comment and uncomment selected lines, group of lines
or insert comment in line.

Comment

Shows the instruction list to be inserted above the

Insert above .
selected line.

Shows the instruction list to be inserted below the

Insert below .
selected line.

s) It will prompt the corresponding window depending on
& | Edit .) .
the selected instruction to edit.

The selected line or multiple lines can be copied, cut or

s |c Cut / Past
AR pasted using this menu button.

]ﬁ[Delete Delete the selected line or multiple lines.

6.1 Multi-line selection

On the right lower corner there is a Multi select check box that allows up to 20 lines be selected at the
same time. It is possible to copy, cut, paste, delete and comment the selected group of lines at the same
time.

6.2 Default move values

Default move values can be accessible by the left lower corner link where, in this case, says MOVEJ S:=50
T:=TO_default O:=0F _default Z:=0. These values will be used by teach instruction explained below.

TPS: Teach Programming System 62

E 0 % Default

= - 1T oy 3T : o _al
- D m i Vi= & sl " Default 55, Defau SN 50%
Selected library:

Default Move values

Move Type IF’ i

peet: [0 |
Tool (%)

OFrame: (%) 13
(%]

J2

Precision: D
GTA type: Im =
GTAindex: [0 | I5
p

™ Multi select

Figure 6-3: default move window

6.3 Library and function types

The function library list button will prompt the library and function list window and what can be
done to them. It shows two list, all robot function libraries and function list associated to the selected
library, all of them available in controller flash memory.

Robot functions

Function libraries: Function list:
i e

Edit
New
Rename

Delete

Figure 6-4: program list window

TPS: Teach Programming System 63

There are two different robot libraries: Robot Libraries (.ROBLIB extension) and Robot Basic Libraries
(.RBSLIB file extension).

Both have the same functionality, but robot libraries can only contain the list of functions available from
pendant. Also, TPS can only edit robot libraries. Robot basic libraries functions and their functions can
only be called.

To select what type of robot library will be shown in the library list just simply press the buttons:

i
Figure 6-5: robot library type
It is possible to edit, duplicate, rename or delete a robot library selecting it on the list and pressing the
corresponding button.
To create a new robot library simply press New button and assign a unique name.
Robot basic library can only be seen if the system is in the correct level.

The picture below shows a blank new library called “ROB_LIB”:

I o @ Defaut R

&a 17 4 31— | 1 = i e all
D m i Vi= sl ¢ Defaul I Defautt SW 50%

i
|

Selected library: ROB_LIB

n
]2
13
J4
15

J6

MOVEJ $:=50 T:=TO_default O:=0F_default Z:=0 ™ Multi select

a1

Figure 6-7: library ROB_LIB recently created

TPS: Teach Programming System 64

6.4 Functions: create and insert

Function editor is very similar to Program editor with the difference that it is possible to create and insert
functions (Program editor can only insert functions).

. . . . - S ,
To create a function, click over ‘insert above’ or ‘insert below’ button, % then ‘Functions’ and
then ‘Create’.

a T & 3=] o %Defau\t faa o
D m i Vi= sl ¢ Defaul I, Detaut SN 50%

i
|

Selected library: ROB_LIB

1
TEACH ROBOT
MOVE BASE
SET GOsSUB
WAIT LABEL
INSERT SPEED STOP
CREATE STRUCTURES EMPTY LINE
ACCESSORIES FUNCTIONS FRAMES
MOVEJ $:=50 T:=TO_default O:=OF _default Z:=0 APPS
EEE - s A0

Figure 6-8: functions menu

The Robot functions creator window will prompt.

TPS: Teach Programming System 65

Robot functions creator

Name:

mul_ab

/—’[Function name

Parameters

Parameters:

T aASFLOAT

bASFLOAT

Return data type

-+ -

Increase / reduce
parameters

~

J

Parameter name

‘ |FLOAT j_/’[Parameter data type

@ Accept

~N

J

Figure 6-9: Robot functions creator

‘Function name’ is the only compulsory entry, ‘Parameters’ and ‘Return’ are optional.

To add parameters just simply click over increase / reduce parameters buttons o ° .

Then, select the parameter, select the parameter data type through the combo box and click over
parameter name. A window will prompt to insert a name for it.

After click over ‘Accept’ button, the example function ‘mul_ab’ will be created as the following image

shows:

= 2 21\

Selected library: ROB_LIB

1 E' 0 % Default

s8¢ Default E@ Default

tf.'%_j 50%

i
il

0 FUNCTION mul_ab(a AS FLOAT,b AS FLOAT) AS FLOAT

1 RETURN
ENDFUNC

bl
4
g

MOVEJ 5:=50 T:=TO_default O:=0F _default Z:=0

1
J2
13
14
J5

J6

[~ Multi select

~ - s @@

Figure 6-10: mul_ab function recently created

TPS: Teach Programming System 66

Pay attention to ‘Compile’ button. In this case the library has not been compiled. Meaning that a
program will not be editable or run.

It is possible to declare variables and return their values in the function.

To do that, first insert a variable declaration inside the Function structure, accessible through ‘SET’
buttonininsert above / below menu 2 —

- _ i @, Defaul
Y 2 = 1 = Ta —all
D = 2 V3= & ol ¢ Default 5%, Defat SV 50%

Selected library: ROB_LIB
0 FUNCTION mul_ab(a AS FLOAT,b AS FLOAT) AS FLOAT

1 s |
2 ENDFUNC
3 ~ Dedclare |c | as [FLOAT -~
“ Set Var | | = | | 2
CSetWR | = | =
~ Set Analog Output | -h= |
¥4
¢ Set Digital Output | - =] -
’
16

™ Multi select

Figure 6-11: insert variable ‘c’ declaration

TPS: Teach Programming System 67

- _ o % Default
— a 3 1 = 1a -ufl
= D = i ‘ 3 <ol ¢ Default 1 Default SN 50%

i
i

Selected library: ROB_LIB

0 FUNCTION mul_ab(a AS FLOAT.b AS FLOAT) AS FLOAT
1 DIM c AS FLOAT

gdRETURN |l
2 ENDFUNC
‘ hp)
3
%
35
6
MOVEJ $:=50 T:=TO_default O:=0OF_default Z:=0 ™ Multi select
EE X 5 ¢ B W

Figure 6-12: ‘c’ variable declared

Now we can set the new variable ‘c’ as the return value for our function by simply edit the ‘RETURN’
instruction using ‘edit’ button after select the line:
= 5 a i ‘ 3= 1 o @, Defaul e

T :
T - _al . SN 50%
= 8§ Default .5&: Default

Selected library: ROB_LIB

o FuncTion r [N T .

1 DIM c AS FL N | |
7] RETURN ElEd C I 1
3 ENDFUNC
‘ q w e r t y u i o p]2
a s d f g h j k | 13
+ ziIxfJcflvib]ln]m <Xl 14
I
% Var & = o . 5
;
[~ Multi select

Figure 6-13: return ‘c’ variable

TPS: Teach Programming System 68

After this, the library can be compiled by pressing ‘compile’ button . It will not return any value
due to ‘c’ variable has not being used but the function syntax is correct. ‘Compile’ button will change if
the library has been compiled successfully. =

A simple operation can be done to finalise our ‘mul_ab’ function. Let’s multiply parameters ‘a’ and ‘b’
and assign it to ‘c’ variable. This can be done using ‘SET’ window as before.

- _ 0 @, Defautt
— 3 = = | - ; T -ull
- 2. E V3= é ol Default 5 Default SN 50%

Selected library: ROB_LIB
0 FUNCTION mul_ab(a AS FLOAT b AS FLOAT) AS FLOAT

! I -~ S S

2 RETURN 1

3 ENDFUNC © Declare | | as [FLoAT -]

. “ SetVar [c | = [a*b | 12
~Set\R | | = | | e
© Set Analog Output | -h= | »
© et Digital Output | -l=] -l

:
J6
™ Multi select

Figure 6-14: set ‘c’ variable as ‘a’ * ‘b’

TPS: Teach Programming System 69

= 5 P ‘ 3— 1 é_n %Default =

: T~
5 <ol 4 Default 17 Defauit SV 50%

l'l
ml

Selected library: ROB_LIB =~

0 FUNCTION mul_ab(a AS FLOAT.b AS FLOAT) AS FLOAT
1 DIM ¢ AS FLOAT

> I)1
2 RETURNc
4 ENDFUNC 7)
5
13
14
15
J6
MOVEJ $:=50 T:=TO_default O:=OF_default Z:=0 [~ Multi select
= | = | 52

Figure 6-15: ‘'’ =‘a’ * ‘b’

After indent our library and compile it, our ‘mul_ab’ is ready to be called from programs.

TPS: Teach Programming System 70

7 Program state manipulation

The program state can be changed by the start ‘ﬁ and stop ‘ﬂ keys.

Once a program is selected (refer to section Projects and programs to know how to select or create a
program) it could be started in different modes depending on how the start button is operated, the
selected execution mode and the selected TPS mode.

TPS can be in Manual mode or Auto mode.

e If the system is in Manual mode D then the demand switch has to be enabled, otherwise
the system will prompt an error if intended to run a program. Refer to Demand switch section to
know how to enable demand switch. =

e If the system is in Auto 0 mode, MOT button | | should be pressed to
enable the system.

Once the system is enabled, a drive enable status icon will be depicted in green. Otherwise it
will be red.

The following table describes the program execution behaviour:

TPS mode Program execution behaviour

Step mode: program will step one line when the button is pressed and, if the
instruction has not been completed, stopped when released. If the instruction has
finished before release start button then the program will remain paused until stop
Manual button is pressed.

Continuous mode: program will start running when the button pressed and hold, and
will pause when released. The program will stop when stop button is pressed.

Step mode: program will step one line when start button is pressed, no matter when
the button is released.

Auto Continuous mode: program will start running when start button pressed and it will
stop when stop button is pressed.

— _}_
To change the operation mode, step button % has to be pressed to toggle between step mode 3=
and continuous mode ‘3‘5

This section is only applicable to TPS. The program execution behaviour will be different if it is
performed through Motion Perfect. Refer to RPS documentation for more detailed information.

TPS: Teach Programming System 7 1

8 Settings
8.1 About

In this section it is shown information about the version of the system: controller version, serial
number, controller type, UniPlay version and RPS version.

— T >— 1 o @ Default , ot
— > — s L o
- D a S— 7 pefaut -, Default SN 50%
About IO config
Controller version: 2.029

Controller serial number: 49

Controller type: 664-X
Uniplay version: 1.29.0.1635
RPS version: 1.0

Figure 8-1: About page

TPS: Teach Programming System 72

8.2 10 configuration

Every system has different 10 configuration. In this page it will be possible to address the different
physical 10s with RPS.

_ = P L1 o @ Detault L o
= D 4 V3= sl 4 Default 1. Defaut SN 50%
About 10 config
Inputs QOutputs

Key Switch Manual: Ij| Motor power:
Key Switch Auto: Drive enabled:
Estop: Machine error:
Servo:
Demand switch: |j|
Demand switch 2: Ij|
Error reset:
Safety door:

Figure 8-2: 10 configuration

The inputs should be set as per physical wiring of the components.
It could be the possibility Servo, Error reset and Safety door do not exist in the real system. For those
ones, a -1 value has to be set. This will tell to TPS no real input has been set for that particular

component.
7~

In the case of Error reset, if there is not real input and -1 is set, Refresh button Lad has to
be pressed to reset the errors in case they occur (refer to section 4.4 Warning Error window).

TPS: Teach Programming System 73

9 Error and warning codes

9.1 Axis status codes

AS_2 Communications error to remote drive
AS_3 Remote drive error

AS_4 In forward hardware limit

AS_5 In reverse hardware limit

AS 8 Following error exceeds limit

AS_9 FS_LIMIT active

AS_10 | RS_LIMIT active

AS_12 | Pulse output axis over-speed

AS_16 | AXIS_FS_LIMIT active

AS_17 | AXIS_RS_LIMIT active

AS_21 FEC 26: Robotics runtime 1-hour free limit. Reset the controller

9.2 Robot status codes

RS_O | WORLD_FS_LIMIT active

RS_1 | WORLD_RS_LIMIT active

RS_2 | ROBOT_FS_LIMIT active

RS_3 | ROBOT_RS_LIMIT active

RS_4 TCP_FS_LIMIT active

TPS: Teach Programming System 74

RS_5 |TCP_RS_LIMIT active

RS_7 Robot following error exceeds limit

RS_8 Wrist singularity

RS_9 Alignment singularity

RS_10 | Elbow singularity

RS_11 | Max speed limit

RS_12 | Robot collided

9.3 TPS system codes

TE_O Jog attempted out of Manual mode. Select Manual mode

TE_1 Jog attempted while E-Stop is pressed. Release E-Stop and enable robot

TE_2 Jog attempted without enable the robot. Press demand button

TE_3 Jog attempted with servo disabled

TE_4 Jog attempted while a program is running

TE_S Jog attempted while move buffers are not empty

TE_6 Jog attempted in linear while in singularity. Jog in joint mode to go out of singularity
TE_7 Attempting to run a program while E-Stop is pressed. Release E-Stop and enable robot
TE_8 Attempting to run a program without enable the robot. Press demand button

TE_9 Attempting to run a program without enable the robot. Press MOT button

TE_10 | Failed to enable the robot

TPS: Teach Programming System 75

TE_11 |Jogspeed 0%

9.4 RPS Architecture codes

RA_O Error status because E-Stop. Release E-Stop and press reset button

RA_1 Error status because MOTION_ERROR. Press reset button to clear the error

RA_2 Error status because SYSTEM_ERROR. Press reset button to clear the error

RA_3 Error status because MOTOR output is off. Press reset button to clear the error

RA_4 Error status because WDOG turned off unexpectedly. Press reset button to clear the error

TPS: Teach Programming System 76

